Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 456
Filter
1.
Chem Sci ; 15(31): 12310-12315, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39118614

ABSTRACT

We report herein a direct and practical synthesis of arylsulfonamides from electron-rich aromatic compounds by using in situ generated N-sulfonylamine as the active electrophile. Substrates include derivatives of aniline, indole, pyrrole, furan, styrene and so on. The reaction proceeds under mild conditions and tolerates many sensitive functional groups such as alkyne, acetate, the trifluoromethoxy group or acetoxymethyl ester. Applications of this method for the construction of metal ion sensors and fluorogenic dye have been demonstrated, thus highlighting the potential of this method for probe development.

2.
Article in English | MEDLINE | ID: mdl-39213635

ABSTRACT

Sequencing of phosphorodiamidate morpholino oligomers (PMOs) by hydrophilic interaction chromatography (HILIC) coupled to tandem mass spectrometry (MS/MS) is reported. The MS/MS analysis was performed using a quadrupole/time-of-flight (Q-ToF) mass analyzer and collision induced dissociation (CID) in negative ion mode. To improve MS sensitivity in negative ion mode, HILIC conditions, including the separation column, mobile phases, and MS parameters, were optimized. Using the developed HILIC-CID-MS/MS method, 100% sequence coverage was achieved for PMOs ranging from 18-mer to 25-mer. Additionally, the method was successfully applied to identifying positional isomers of n - 1 deletion impurities present in PMO drug substances.

3.
Int J Infect Dis ; 147: 107198, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117174

ABSTRACT

OBJECTIVE: To investigate the effects of repeated vaccination with ancestral SARS-CoV-2 (Wuhan-hu-1)-based inactivated, recombinant protein subunit or vector-based vaccines on the neutralizing antibody response to Omicron subvariants. METHODS: Individuals who received four-dose vaccinations with the Wuhan-hu-1 strain, individuals who were infected with the BA.5 variant alone without prior vaccination, and individuals who experienced a BA.5 breakthrough infection (BTI) following receiving 2-4 doses of the Wuhan-hu-1 vaccine were enrolled. Neutralizing antibodies against D614G, BA.5, XBB.1.5, EG.5.1, and BA.2.86 were detected using a pseudovirus-based neutralization assay. Antigenic cartography was used to analyze cross-reactivity patterns among D614G, BA.5, XBB.1.5, EG.5.1, and BA.2.86 and sera from individuals. RESULTS: The highest neutralizing antibody titers against D614G were observed in individuals who only received four-dose vaccination and those who experienced BA.5 BTI, which was also significantly higher than the antibody titers against XBB.1.5, EG.5.1, and BA.2.86. In contrast, only BA.5 infection elicited comparable neutralizing antibody titers against the tested variants. While neutralizing antibody titers against D614G or BA.5 were similar across the cohorts, the neutralizing capacity of antibodies against XBB.1.5, EG.5.1, and BA.2.86 was significantly reduced. BA.5 BTI following heterologous booster induced significantly higher neutralizing antibody titers against the variants, particularly against XBB.1.5 and EG.5.1, than uninfected vaccinated individuals, only BA.5 infected individuals, or those with BA.5 BTI after primary vaccination. CONCLUSIONS: Our findings suggest that repeated vaccination with the Wuhan-hu-1 strain imprinted a neutralizing antibody response toward the Wuhan-hu-1 strain with limited effects on the antibody response to the Omicron subvariants.

4.
Sci Rep ; 14(1): 19299, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39164351

ABSTRACT

To evaluate whether radiomics models based on unenhanced paranasal sinuses CT images could be a useful tool for differentiating inverted papilloma (IP) from chronic rhinosinusitis with polyps (CRSwNP). This retrospective study recruited 240 patients with CRSwNP and 106 patients with IP from three centers. 253 patients from Qilu Hospital were randomly divided into the training set (n = 151) and the internal validation set (n = 102) with a ratio of 6:4. 93 patients from the other two centers were used as the external validation set. The patients with the unilateral disease (n = 115) from Qilu Hospital were selected to further develop a subgroup analysis. Lesion segmentation was manually delineated in CT images. Least absolute shrinkage and selection operator algorithm was performed for feature reduction and selection. Decision tree, support vector machine, random forest, and adaptive boosting regressor were employed to establish the differential diagnosis models. 43 radiomic features were selected for modeling. Among the models, RF achieved the best results, with an AUC of 0.998, 0.943, and 0.934 in the training set, the internal validation set, and the external validation set, respectively. In the subgroup analysis, RF achieved an AUC of 0.999 in the training set and 0.963 in the internal validation set. The proposed radiomics models offered a non-invasion and accurate differential approach between IP and CRSwNP and has some significance in guiding clinicians determining the best treatment plans, as well as predicting the prognosis.


Subject(s)
Nasal Polyps , Papilloma, Inverted , Radiomics , Rhinosinusitis , Tomography, X-Ray Computed , Adult , Aged , Female , Humans , Male , Middle Aged , Chronic Disease , Diagnosis, Differential , Nasal Polyps/diagnostic imaging , Nasal Polyps/pathology , Papilloma, Inverted/diagnostic imaging , Papilloma, Inverted/pathology , Retrospective Studies , Rhinosinusitis/diagnostic imaging , Rhinosinusitis/pathology , Tomography, X-Ray Computed/methods
5.
ACS Nano ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39056445

ABSTRACT

Ru-based catalysts have emerged as promising alternatives to HgCl2 in vinyl chloride monomer (VCM) production by acetylene hydrochlorination. However, poor C2H2 activation and the generation of key intermediates (*CH2═CH) have posed grand challenges for enhanced catalytic performances. Herein, we synthesized a Ni-intercalated Ru heterostructure using a lattice-strain engineering strategy, resulting in the desired electronic and chemical environments. The collaboration of Ni splits the adsorption centers of C2H2 and HCl by weakening the strong steric hindrance, and it also promotes the activation of the linear C≡C configurations. The well-controlled lattice strain enables strong d-d hybridization interactions between Ni and Ru, resulting in an upshift of the d-band center from -3.72 eV (for Ru/C) to -3.49 eV and electronic delocalization. This optimized local Ni-Ru/C structure thus enhances *H adsorption while weakening the energy barrier for generating *CH2═CH intermediates. Furthermore, the energy barrier for VCM formation was simultaneously reduced. Accordingly, the Ni-Ru/C heterostructures achieve improved performance in pilot-scale trials, with a conversion of >99.2% and stability for over 500 h. These performances significantly surpass most reported Ru-based moieties and the traditional Hg catalysts, offering a promising avenue for C2H2 activation in industrial applications.

6.
J Hazard Mater ; 476: 135086, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39024762

ABSTRACT

Membranes for wastewater treatment should ideally exhibit sustainable high permeate production, enhanced pollutant removal, and intrinsic physical rejection. In this study, CoFe2O4/MoS2 serves as a non-homogeneous phase catalyst; it is combined with polyether sulfone membranes via liquid-induced phase separation to simultaneously sustain membrane permeability and enhance antibiotic pollutant degradation. The prepared catalytic membranes have higher pure water flux (329.34 L m-2 h-1) than pristine polyethersulfone membranes (219.03 L m-2 h-1), as well as higher mean pore size, porosity, and hydrophilicity. Under a moderate transmembrane pressure (0.05 MPa), tetracycline (TC) in synthetic and real wastewater was degraded by the optimal catalytic membrane by 72.7 % and 91.2 %, respectively. Owing to the generation of the reactive oxygen species (ROS) during the Fenton-like reaction process, the catalytic membrane could exclude the natural organics during the H2O2 backwash step and selectively promote fouling degradation in the membrane channel. The irreversible fouling ratio of the catalyzed membrane was significantly reduced, and the flux recovery rate increased by up to 91.6 %. A potential catalytic mechanism and TC degradation pathways were proposed. This study offers valuable insights for designing catalytic membranes with enhanced filtration performance.


Subject(s)
Anti-Bacterial Agents , Disulfides , Hydrogen Peroxide , Membranes, Artificial , Molybdenum , Permeability , Water Pollutants, Chemical , Hydrogen Peroxide/chemistry , Catalysis , Water Pollutants, Chemical/chemistry , Anti-Bacterial Agents/chemistry , Disulfides/chemistry , Molybdenum/chemistry , Sulfones/chemistry , Tetracycline/chemistry , Cobalt/chemistry , Wastewater/chemistry , Water Purification/methods , Waste Disposal, Fluid/methods , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Polymers
7.
J Immunother Cancer ; 12(7)2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39067872

ABSTRACT

OBJECTIVE: Hepatocellular carcinoma (HCC) poses a significant clinical challenge because the long-term benefits of immune checkpoint blockade therapy are limited. A comprehensive understanding of the mechanisms underlying immunotherapy resistance in HCC is imperative for improving patient prognosis. DESIGN: In this study, to systematically investigate the characteristics of cancer-associated fibroblast (CAF) subsets and the dynamic communication among the tumor microenvironment (TME) components regulated by CAF subsets, we generated an HCC atlas by compiling single-cell RNA sequencing (scRNA-seq) datasets on 220 samples from six datasets. We combined spatial transcriptomics with scRNA-seq and multiplexed immunofluorescence to identify the specific CAF subsets in the TME that determine the efficacy of immunotherapy in HCC patients. RESULTS: Our findings highlight the pivotal role of POSTN+ CAFs as potent immune response barriers at specific tumor locations, as they hinder effective T-cell infiltration and decrease the efficacy of immunotherapy. Additionally, we elucidated the interplay between POSTN+ CAFs and SPP1+ macrophages, whereby the former recruits the latter and triggers increased SPP1 expression via the IL-6/STAT3 signaling pathway. Moreover, we demonstrated a spatial correlation between POSTN+ CAFs and SPP1+ macrophages, revealing an immunosuppressive microenvironment that limits the immunotherapy response. Notably, we found that patients with elevated expression levels of both POSTN+ CAFs and SPP1+ macrophages achieved less therapeutic benefit in an immunotherapy cohort. CONCLUSION: Our research elucidates light on the role of a particular subset of CAFs in immunotherapy resistance, emphasizing the potential benefits of targeting specific CAF subpopulations to improve clinical responses to immunotherapy.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Hepatocellular , Immunotherapy , Liver Neoplasms , Tumor Microenvironment , Humans , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/immunology , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/immunology , Immunotherapy/methods , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Mice
8.
Hum Genet ; 143(8): 979-993, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39066985

ABSTRACT

Gasdermin E (GSDME), a member of the gasdermin protein family, is associated with post-lingual hearing loss. All GSDME pathogenic mutations lead to skipping exon 8; however, the molecular mechanisms underlying hearing loss caused by GSDME mutants remain unclear. GSDME was recently identified as one of the mediators of programmed cell death, including apoptosis and pyroptosis. Therefore, in this study, we injected mice with GSDME mutant (MT) and examined the expression levels to assess its effect on hearing impairment. We observed loss of hair cells in the organ of Corti and spiral ganglion neurons. Further, the N-terminal release from the GSDME mutant in HEI-OC1 cells caused pyroptosis, characterized by cell swelling and rupture of the plasma membrane, releasing lactate dehydrogenase and cytokines such as interleukin-1ß. We also observed that the N-terminal release from GSDME mutants could permeabilize the mitochondrial membrane, releasing cytochromes and activating the mitochondrial apoptotic pathway, thereby generating possible positive feedback on the cleavage of GSDME. Furthermore, we found that treatment with disulfiram or dimethyl fumarate might inhibit pyroptosis and apoptosis by inhibiting the release of GSDME-N from GSDME mutants. In conclusion, this study elucidated the molecular mechanism associated with hearing loss caused by GSDME gene mutations, offering novel insights for potential treatment strategies.


Subject(s)
Apoptosis , Pyroptosis , Pyroptosis/genetics , Animals , Mice , Gain of Function Mutation , Hearing Loss/genetics , Hearing Loss/pathology , Humans , Spiral Ganglion/metabolism , Spiral Ganglion/pathology , Organ of Corti/metabolism , Organ of Corti/pathology , Hair Cells, Auditory/metabolism , Hair Cells, Auditory/pathology , Gasdermins
9.
Front Immunol ; 15: 1401852, 2024.
Article in English | MEDLINE | ID: mdl-38994350

ABSTRACT

Exosomes, as a class of small extracellular vesicles closely related to the biological behavior of various types of tumors, are currently attracting research attention in cancer diagnosis and treatment. Regarding cancer diagnosis, the stability of their membrane structure and their wide distribution in body fluids render exosomes promising biomarkers. It is expected that exosome-based liquid biopsy will become an important tool for tumor diagnosis in the future. For cancer treatment, exosomes, as the "golden communicators" between cells, can be designed to deliver different drugs, aiming to achieve low-toxicity and low-immunogenicity targeted delivery. Signaling pathways related to exosome contents can also be used for safer and more effective immunotherapy against tumors. Exosomes are derived from a wide range of sources, and exhibit different biological characteristics as well as clinical application advantages in different cancer therapies. In this review, we analyzed the main sources of exosomes that have great potential and broad prospects in cancer diagnosis and therapy. Moreover, we compared their therapeutic advantages, providing new ideas for the clinical application of exosomes.


Subject(s)
Biomarkers, Tumor , Exosomes , Neoplasms , Humans , Exosomes/metabolism , Exosomes/immunology , Neoplasms/therapy , Neoplasms/immunology , Animals , Immunotherapy/methods , Liquid Biopsy/methods
10.
Am J Transl Res ; 16(6): 2509-2516, 2024.
Article in English | MEDLINE | ID: mdl-39006273

ABSTRACT

PURPOSE: To evaluate the effect of propylene glycol mannate sulfate (PGMS) on retinopathy in non-proliferative diabetic patients. METHODS: Eighty patients (111 eyes) with non-proliferative diabetic retinopathy were selected and retrospectively analyzed. Patients were divided into a control group (40 cases, 56 eyes) and an experimental group (40 cases, 55 eyes) using a random number table method. The control group continued had routine blood glucose management, while the experimental group received PGMS 100 mg additionally TID for 60 days. Changes in visual acuity, fundus conditions including hemorrhage points and exudation in each quadrant, and non-perfusion area were revealed through fundus angiography before and after the treatment period. RESULTS: After PGMS treatment, the experimental group demonstrated significant improvements compared to the control group in terms of eyesight improvement (P=0.002), the macular edema and macular retinal thickness (P=0.008). The total clinical efficacy rate of the experimental group was 67.86%, which was higher than 38.18% of the control group (P=0.032). Notably, there was a significant reduction in macular hemorrhage and hard extrusion. CONCLUSION: Oral administration of PGMS is an effective treatment for non-proliferative diabetic retinopathy.

11.
Heliyon ; 10(11): e31775, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38947426

ABSTRACT

Diabetic nephropathy (DN) has emerged as the foremost cause of end-stage renal disease (ESRD) globally. Endoplasmic reticulum (ER) stress plays a critical role in DN progression. Triterpenoid saponin from Aralia taibaiensis (sAT) has been reported to possess anti-diabetic and anti-oxidant effects. The aim of this study was to examine the influence of sAT on DN treatment and elucidate potential underlying mechanisms. A high-fat diet (HFD) and Streptozotocin (STZ) were employed to induce DN in male Sprague Dawley (SD) rats which were subsequently treated with varying concentrations of sAT for 8 weeks. Our findings reveal that different doses of sAT significantly mitigated hyperglycemia, reduced urinary albumin excretion, and decreased plasma creatinine and blood urea nitrogen levels in DN rats. Moreover, sAT administration improved body weight, alleviated renal fibrosis and histopathological changes in the diabetic kidneys. Notably, sAT treatment partially restored increased Bax expression and decreased Bcl-2 expression. Additionally, sAT inhibited ER stress-related proteins, including GRP78, p-PERK, ATF4 and CHOP in kidneys of DN rats. These results suggest that sAT ameliorated experimental diabetic nephropathy, at least in part, through ER stress pathway. These findings provide a scientific basis for the potential development of sAT as a therapeutic agent for DN treatment.

12.
Article in English | MEDLINE | ID: mdl-39023137

ABSTRACT

Coronary heart disease (CHD) is a significant global health concern, necessitating continuous advancements in treatment modalities to improve patient outcomes. Traditional Chinese medicine (TCM) offers alternative therapeutic approaches, but integration with modern biomedical technologies remains relatively unexplored. This study aimed to assess the efficacy of a combined treatment approach for CHD, integrating traditional Chinese medicinal interventions with modern biomedical sensors and stellate ganglion modulation. The objective was to evaluate the impact of this combined treatment on symptom relief, clinical outcomes, hemorheological indicators, and inflammatory biomarkers. A randomized controlled trial was conducted on 117 CHD patients with phlegm-turbidity congestion and excessiveness type. Patients were divided into a combined treatment group (CTG) and a traditional Chinese medicinal group (CMG). The CTG group received a combination of herbal decoctions, thread-embedding therapy, and stellate ganglion modulation, while the CMG group only received traditional herbal decoctions. The CTG demonstrated superior outcomes compared to the CMG across multiple parameters. Significant reductions in TCM symptom scores, improved clinical effects, reduced angina manifestation, favorable changes in hemorheological indicators, and decreased serum inflammatory biomarkers were observed in the CTG post-intervention. The combination of traditional Chinese medicinal interventions with modern biomedical sensors and stellate ganglion modulation has shown promising results in improving symptoms, clinical outcomes, and inflammatory markers in CHD patients. This holistic approach enhances treatment efficacy and patient outcomes. Further research and advancements in sensor technology are needed to optimize this approach.

13.
Nat Commun ; 15(1): 6035, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019874

ABSTRACT

Ru single-atom catalysts have great potential to replace toxic mercuric chloride in acetylene hydrochlorination. However, long-term catalytic stability remains a grand challenge due to the aggregation of Ru atoms caused by over-chlorination. Herein, we synthesize an asymmetric Ru-In atomic pair with vinyl chloride monomer yield (>99.5%) and stability (>600 h) at a gas hourly space velocity of 180 h-1, far surpassing those of the Ru single-atom counterparts. A combination of experimental and theoretical techniques reveals that there is a strong d-p orbital interaction between Ru and In atoms, which not only enables the selective adsorption of acetylene and hydrogen chloride at different atomic sites but also optimizes the electron configuration of Ru. As a result, the intrinsic energy barrier for vinyl chloride generation is lowered, and the thermodynamics of the chlorination process at the Ru site is switched from exothermal to endothermal due to the change of orbital couplings. This work provides a strategy to prevent the deactivation and depletion of active Ru centers during acetylene hydrochlorination.

14.
JAC Antimicrob Resist ; 6(4): dlae100, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39071163

ABSTRACT

Background: The widespread emergence of antibiotic resistance including MDR in Gram-negative bacterial pathogens poses a critical challenge to the current antimicrobial armamentarium. Objectives: To create a novel drug-Fc conjugate (DFC) that can be delivered at sustained and prolonged levels while simultaneously activating the host immune response to combat MDR Gram-negative infections. Methods: The Cloudbreak™ platform was used to develop DFCs consisting of a targeting moiety (TM) (a polymyxin-derived dimer) attached via a non-cleavable linker to an effector moiety (EM) (the Fc domain of human IgG1). In vitro activities of the DFCs were assessed by MIC testing. Neutropenic mouse models of thigh infection, septicaemia and pneumonia were used to evaluate in vivo efficacy. Pharmacokinetics were evaluated in mice and cynomolgus monkeys. Results: A single prophylactic dose of our lead DFC, CTC-177, resulted in significantly decreased bacterial burdens and reduced inflammation comparable to daily treatment with colistin in septicaemia and pneumonia mouse models. Furthermore, CTC-177 prophylaxis was able to restore colistin efficacy in colistin-resistant septicaemia, reducing bacterial burdens beyond the limit of detection. Finally, CTC-177 displayed a long terminal half-life of over 24 and 65 h in mice and cynomolgus monkeys, respectively. Conclusions: These data support the continued development of Cloudbreak™ DFCs as broad-spectrum prophylactic agents against Gram-negative infections.

15.
Heliyon ; 10(11): e32753, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38912456

ABSTRACT

Introduction: Congenital bronchial atresia (CBA), as a rare developmental abnormality of the lung, is usually asymptomatic and is accidently discovered in most cases. Currently, no standardized guidelines for the treatment or management of CBA have been established. Case presentation: A 22-year-old male soldier was referred to Shanghai Changhai Hospital, The First Affiliated Hospital of Naval Medical University due to chest tightness and shortness of breath after repeated strenuous activities. Contrast-enhanced computed tomography (CT) revealed an 18mm × 11mm solitary, well-circumscribed, and solid nodule with no enhancement in the right upper lobe (RUL), and emphysematous changes distributed throughout the RUL. A flexible bronchoscopic examination showed extrinsic compression stenosis in the bronchial opening of the right middle lobe (RML). After three-dimensional (3D) reconstruction CT and a multidisciplinary consultation, a diagnosis of CBA in the anterior segment (B3) of RUL was established. Subsequently, thoracoscopic right upper lobectomy was performed and resulted in an improved respiratory capacity 6 months after surgery. To date, the patient has good quality of life without any complication. Conclusion: This study underscores the role of bronchoscopy, 3D reconstruction CT, and a multidisciplinary consultation in the diagnosis of CBA, and highlights that a thoracoscopic intervention should be considered in such case.

16.
Plants (Basel) ; 13(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38931145

ABSTRACT

Alkaline stress with high pH levels could significantly influence plant growth and survival. The enzyme 9-cis-epoxycarotenoid dioxygenase (NCED) serves as a critical bottleneck in the biosynthesis of abscisic acid (ABA), making it essential for regulating stress tolerance. Here, we show that OsNCED3-overexpressing rice lines have increased ABA content by up to 50.90% and improved transcription levels of numerous genes involved in stress responses that significantly enhance seedling survival rates. Overexpression of OsNCED3 increased the dry weight contents of the total chlorophyll, proline, soluble sugar, starch, and the activities of antioxidant enzymes of rice seedlings, while reducing the contents of O2·-, H2O2, and malondialdehyde under hydroponic alkaline stress conditions simulated by 10, 15, and 20 mmol L-1 of Na2CO3. Additionally, the OsNCED3-overexpressing rice lines exhibited a notable increase in the expression of OsNCED3; ABA response-related genes OsSalT and OsWsi18; ion homeostasis-related genes OsAKT1, OsHKT1;5, OsSOS1, and OsNHX5; and ROS scavenging-related genes OsCu/Zn-SOD, OsFe-SOD, OsPOX1, OsCATA, OsCATB, and OsAPX1 in rice seedling leaves. The results of these findings suggest that overexpression of OsNCED3 upregulates endogenous ABA levels and the expression of stress response genes, which represents an innovative molecular approach for enhancing the alkaline tolerance of rice seedlings.

17.
Cell Rep ; 43(7): 114387, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38896777

ABSTRACT

The ongoing emergence of SARS-CoV-2 variants poses challenges to the immunity induced by infections and vaccination. We conduct a 6-month longitudinal evaluation of antibody binding and neutralization of sera from individuals with six different combinations of vaccination and infection against BA.5, XBB.1.5, EG.5.1, and BA.2.86. We find that most individuals produce spike-binding IgG or neutralizing antibodies against BA.5, XBB.1.5, EG.5.1, and BA.2.86 2 months after infection or vaccination. However, compared to ancestral strain and BA.5 variant, XBB.1.5, EG.5.1, and BA.2.86 exhibit comparable but significant immune evasion. The spike-binding IgG and neutralizing antibody titers decrease in individuals without additional antigen exposure, and <50% of individuals neutralize XBB.1.5, EG.5.1, and BA.2.86 during the 6-month follow-up. Approximately 57% of the 107 followed up individuals experienced an additional infection, leading to improved binding IgG and neutralizing antibody levels against these variants. These findings provide insights into the impact of SARS-CoV-2 variants on immunity following repeated exposure.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunoglobulin G , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination , Humans , SARS-CoV-2/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , COVID-19 Vaccines/immunology , Immunoglobulin G/immunology , Immunoglobulin G/blood , Spike Glycoprotein, Coronavirus/immunology , Female , Male , Adult , Middle Aged , Antibody Formation/immunology
18.
Angew Chem Int Ed Engl ; : e202404784, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38868978

ABSTRACT

The aqueous zinc-iodine battery is a promising energy storage device, but the conventional two-electron reaction potential and energy density of the iodine cathode are far from meeting practical application requirements. Given that iodine is rich in redox reactions, activating the high-valence iodine cathode reaction has become a promising research direction for developing high-voltage zinc-iodine batteries. In this work, by designing a multifunctional electrolyte additive trimethylamine hydrochloride (TAH), a stable high-valence iodine cathode in four-electron-transfer I-/I2/I+ reactions with a high theoretical specific capacity is achieved through a unique amine group, Cl bidentate coordination structure of (TA)ICl. Characterization techniques such as synchrotron radiation, in situ Raman spectra, and DFT calculations are used to verify the mechanism of the stable bidentate structure. This electrolyte additive stabilizes the zinc anode by promoting the desolvation process and shielding mechanism, enabling the zinc anode to cycle steadily at a maximum areal capacity of 57 mAh cm-2 with 97 % zinc utilization rate. Finally, the four-electron-transfer aqueous Zn-I2 full cell achieves 5000 stable cycles at an N/P ratio of 2.5. The unique bidentate coordination structure contributes to the further development of high-valence and high capacity aqueous zinc-iodine batteries.

19.
Sci Rep ; 14(1): 14747, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926508

ABSTRACT

There are no targeted rehabilitation training modalities and assessment tools for patients after transoral endoscopic thyroidectomy vestibular approach (TOETVA). Herein, we develop a new assessment questionnaire and rehabilitation training modality and evaluate its safety and effectiveness. The THYCA-QoL-TOETVA questionnaire was compiled, and reliability and validity analyses were performed. Patients were divided into the new rehabilitation training group (N) or the conventional rehabilitation training group (C), and 1:1 propensity score matching (PSM) was performed after administering questionnaires to patients in both groups. Cervical range of motion (CROM) data were also measured and collected for statistical analysis. The questionnaire used in this study showed good expert authority, coordination, internal consistency, and questionnaire reliability. A total of 476 patients were included after PSM, and the questionnaire results showed that recovery and quality of life were better in the N group than in the C group (124.55 ± 8.171 vs. 122.94 ± 8.366, p = 0.026). Analysis of cervical spine mobility showed that rehabilitation was better in the N group compared to the C group at postoperative one month (flexion: 1.762°, extension: 4.720°, left lateral bending: 3.912°, right lateral bending: 4.061°, left axial rotation: 5.180°, right axial rotation: 5.199°, p value all of these < 0.001), and at postoperative three months (flexion: 2.866°, extension: 2.904°, left lateral bending: 3.927°, right lateral bending: 3.330°, left axial rotation: 4.395°, right axial rotation: 3.992°, p value all of these < 0.001). The THYCA-QoL-TOETVA provides an appropriate and effective tool for measuring the postoperative quality of life of TOETVA patients. This new rehabilitation training can effectively alleviate the problem of limited neck movement and improve the quality of life of patients after TOETVA surgery.Trial registration: ChiCTR2300069097.


Subject(s)
Quality of Life , Thyroidectomy , Humans , Thyroidectomy/methods , Thyroidectomy/rehabilitation , Thyroidectomy/adverse effects , Female , Male , Adult , Middle Aged , Surveys and Questionnaires , Range of Motion, Articular , Postoperative Period , Natural Orifice Endoscopic Surgery/methods
20.
Front Neurol ; 15: 1410516, 2024.
Article in English | MEDLINE | ID: mdl-38882699

ABSTRACT

Background: The pathogenesis of idiopathic sudden sensorineural hearing loss remains unclear, and no substantial breakthroughs have been achieved in its treatment. Therefore, we conducted this study with the aim to investigate the clinical features and prognostic factors of patients with idiopathic sudden sensorineural hearing loss and auditory nerve enhancement by using three-dimensional fluid-attenuated inversion recovery (3D-FLAIR) magnetic resonance imaging (MRI) of the inner ear. Methods: We retrospectively analyzed the clinical data of adult patients, who experienced sudden unilateral deafness and were admitted to the Department of Otolaryngology, Shandong Provincial ENT Hospital, between December 2020 and July 2021. Patients were divided into an auditory nerve enhancement group and a normal inner ear group, according to 3D-FLAIR MRI findings. Differences in sex, age, side, disease course, underlying diseases, dizziness/vertigo, vestibular function, degree of deafness, hearing classification, and treatment efficacy were analyzed. Results: Of the 112 cases of sudden idiopathic deafness, 16.07% exhibited enhancement of the auditory nerve on inner-ear 3D-FLAIR MRI. Statistically significant differences in the degree and type of hearing loss were detected between the two groups (p < 0.05). The rates of abnormal results in the caloric, vestibular-evoked myogenic potential, and video head impulse tests were higher in the auditory nerve enhancement group. The cure rate (11.1%) in patients with auditory nerve enhancement was lower than that in patients with normal inner ear MRI findings (28.7%); however, the difference was not statistically significant. Conclusion: Findings from 3D-FLAIR MRI scans of the inner ear indicated that patients with sudden deafness and auditory nerve enhancement experienced severe hearing loss, aggravated vestibular function injury, and a significantly decreased cure rate. Prompt treatment, ideally within 2 weeks of disease onset, can facilitate hearing recovery.

SELECTION OF CITATIONS
SEARCH DETAIL