Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 694
Filter
1.
Seizure ; 119: 28-35, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38772097

ABSTRACT

PURPOSE: This study aimed to explore seizure semiology and the effects of intracerebral electrical stimulation on the human posterior cingulate cortex (PCC) using Stereoelectroencephalography (SEEG) to deepen our comprehension of posterior cingulate epilepsy (PCE). METHODS: This study examined the characteristics of seizures through video documentation, by assessing the outcomes of intracranial electrical stimulation (iES) during SEEG. We further identified the connection between the observed semiology and precise anatomical locations within the PCC subregions where seizure onset zones (SOZ) were identified. RESULTS: Analysis was conducted on 59 seizures from 15 patients recorded via SEEG. Behavioural arrest emerged as the predominant manifestation across the PCC subregions. Where ictal activity extended to both the mesial and lateral temporal cortex, automatism was predominantly observed in seizures originating from the ventral PCC (vPCC). The retrosplenial cortex (RSC) is associated with complex motor behaviour, with seizure discharges spreading to the temporal lobe. Seizures originating from the PCC include axial tonic and autonomic seizures. Only one case of positive clinical seizures was documented. High frequencies of iES within the PCC induced various clinical responses, categorised as vestibular, visual, psychological, and autonomic, with vestibular reactions primarily occurring in the dorsal PCC (dPCC) and RSC, visual responses in the left RSC, and autonomic reactions in the vPCC and RSC. CONCLUSION: The manifestations of seizures in PCE vary according to the SOZ and the patterns of seizure propagation. The occurrence of seizures induced by iES is exceedingly rare, indicating that mapping of the PCC could pinpoint the primary sector of PCC.

2.
Transl Oncol ; 45: 101974, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38710133

ABSTRACT

Meningioma is a benign tumor with slow growth and long course. However, patients with recurrent malignant meningioma still face a lack of effective treatment. Here, we report a rare case of primary mediastinal malignant meningioma with lung and bone metastases, who benefited from the treatment of apatinib (≥33 months) and anlotinib (until the publication date). Retrospective molecular analysis revealed the frequent amplification of FGF6 in primary and metastatic lesions. Then we constructed the FGF6 over-expressed IOMM-LEE and CH157MN malignant meningioma cell lines, and in vitro and vivo experiments showed that overexpression of FGF6 can promote the proliferation, migration and invasion of malignant meningioma cells. Based on the Western analysis, we revealed that FGF6 can promote the phosphorylation of FGFR, AKT, and ERK1/2, which can be inhibited by anlotinib. Together, we were the first to verify that overexpression of FGF6 promotes the progression of malignant meningiomas by activating FGFR/AKT/ERK1/2 pathway and pointed out that anlotinib may effectively inhibit the disease progression of patients with FGF6 amplification.

3.
bioRxiv ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38712030

ABSTRACT

Introduction: Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within the non-Hispanic White (NHW) population. Here we aimed to provide comprehensive insights into the proteomic landscape of AD across diverse racial and ethnic groups. Methods: Dorsolateral prefrontal cortex (DLPFC) and superior temporal gyrus (STG) brain tissues were donated from multiple centers (Mayo Clinic, Emory University, Rush University, Mt. Sinai School of Medicine) and were harmonized through neuropathological evaluation, specifically adhering to the Braak staging and CERAD criteria. Among 1105 DLPFC tissue samples (998 unique individuals), 333 were from African American donors, 223 from Latino Americans, 529 from NHW donors, and the rest were from a mixed or unknown racial background. Among 280 STG tissue samples (244 unique individuals), 86 were African American, 76 Latino American, 116 NHW and the rest were mixed or unknown ethnicity. All tissues were uniformly homogenized and analyzed by tandem mass tag mass spectrometry (TMT-MS). Results: As a Quality control (QC) measure, proteins with more than 50% missing values were removed and iterative principal component analysis was conducted to remove outliers within brain regions. After QC, 9,180 and 9,734 proteins remained in the DLPC and STG proteome, respectively, of which approximately 9,000 proteins were shared between regions. Protein levels of microtubule-associated protein tau (MAPT) and amyloid-precursor protein (APP) demonstrated AD-related elevations in DLPFC tissues with a strong association with CERAD and Braak across racial groups. APOE4 protein levels in brain were highly concordant with APOE genotype of the individuals. Discussion: This comprehensive region resolved large-scale proteomic dataset provides a resource for the understanding of ethnoracial-specific protein differences in AD brain.

4.
Article in English | MEDLINE | ID: mdl-38742958

ABSTRACT

Flame retardants could improve the safety properties of lithium batteries (LBs) with the sacrifice of electrochemical performance due to parasitic reactions. To concur with this, we designed thermal-response clothes for hexachlorophosphazene (HCP) additives by the microcapsule technique with urea-formaldehyde (UF) resin as the shell. HCP@UF combines with polyacrylonitrile (PAN) by hydrogen bonds successfully to form PAN-HCP@UF as the flame-retardant solid polymer electrolyte. The hydrogen bonds ensure excellent mechanical properties of the polymer electrolyte. The multiscale free radical-annihilating agent HCP effectively eliminates hydrogen free radicals of electrolytes under high temperature, showing excellent flame retardation. During the operation of the battery, functional groups on the UF resin act as active sites to promote the migration of lithium ions, while the internal HCP is protected from electrochemical reaction. With 25% HCP@UF addition, the limiting oxygen index of the PAN-HCP@UF increases to 28% and the Li+ transfer number up to 0.80. By UF protection, the initial capacity retention rate of the Li||LFP battery that assembles with PAN-HCP@UF is 88.8% after 500 cycles at 0.5 C. Thus, the microcapsule-encapsulated approach is deemed to provide an innovative strategy to prepare high-safety solid-state LB with a stable long cycle life.

6.
medRxiv ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38765961

ABSTRACT

Adenosine-to-inosine (A-to-I) editing is a prevalent post-transcriptional RNA modification within the brain. Yet, most research has relied on postmortem samples, assuming it is an accurate representation of RNA biology in the living brain. We challenge this assumption by comparing A-to-I editing between postmortem and living prefrontal cortical tissues. Major differences were found, with over 70,000 A-to-I sites showing higher editing levels in postmortem tissues. Increased A-to-I editing in postmortem tissues is linked to higher ADAR1 and ADARB1 expression, is more pronounced in non-neuronal cells, and indicative of postmortem activation of inflammation and hypoxia. Higher A-to-I editing in living tissues marks sites that are evolutionarily preserved, synaptic, developmentally timed, and disrupted in neurological conditions. Common genetic variants were also found to differentially affect A-to-I editing levels in living versus postmortem tissues. Collectively, these discoveries illuminate the nuanced functions and intricate regulatory mechanisms of RNA editing within the human brain.

7.
Talanta ; 274: 126071, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38604045

ABSTRACT

The construction of hybrid materials is significant for the exploration of functionalities in colorimetric biosensing due to its structural designability and synergy effects. In this work, a COF-on-MOF hybrid nanomaterial has been newly synthesized for colorimetric biosensing. Experimental results reveal that on-surface synthesis of COF on MOF brings nanoscale proximity between COF and MOF, which exhibits more than two folds of peroxidase-like activity as compared to single Fe-MOF. Therefore, by using the MCA@Fe-MOF nanomaterial with the assist of a specific acetyl-peptide, MCA@Fe-MOF can serve as an efficient signal reporter for colorimetric assay of histone deacetylase (HDAC), and the limit of detection (LOD) can be as low as 0.261 nM. Looking forward, the demand for diverse and promising COF-on-MOF nanomaterials with varied functionalities is anticipated, propelling further exploration of their role in colorimetric biosensing.


Subject(s)
Biosensing Techniques , Metal-Organic Frameworks/chemistry , Biosensing Techniques/methods , Colorimetry/instrumentation , Colorimetry/methods , Catalysis , Histone Deacetylases/metabolism , Limit of Detection , Nanoparticles/chemistry
8.
J Hazard Mater ; 470: 134175, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38574662

ABSTRACT

Emerging organic photoelectrochemical transistors (OPECTs) with inherent amplification capabilities, good biocompatibility and even self-powered operation have emerged as a promising detection tool, however, they are still not widely studied for pollutant detection. In this paper, a novel OPECT dual-mode aptasensor was constructed for the ultrasensitive detection of di(2-ethylhexyl) phthalate (DEHP). MXene/In2S3/In2O3 Z-scheme heterojunction was used as a light fuel for ion modulation in sensitive gated OPECT biosensing. A transistor system based on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) converted biological events associated with photosensitive gate achieving nearly a thousand-fold higher current gain at zero bias voltage. This work quantified the target DEHP by aptamer-specific induction of CRISPR-Cas13a trans-cutting activity with target-dependent rolling circle amplification as the signal amplification unit, and incorporated the signal changes strategy of biocatalytic precipitation and TMB color development. Combining OPECT with the auxiliary validation of colorimetry (CM), high sensitivity and accurate detection of DEHP were achieved with a linear range of 0.1 pM to 200 pM and a minimum detection limit of 0.02 pM. This study not only provides a new method for the detection of DEHP, but also offers a promising prospect for the gating and application of the unique OPECT.


Subject(s)
Biosensing Techniques , Diethylhexyl Phthalate , Electrochemical Techniques , Transistors, Electronic , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , CRISPR-Cas Systems , Diethylhexyl Phthalate/chemistry , Diethylhexyl Phthalate/analysis , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Limit of Detection , Nucleic Acid Amplification Techniques , Polystyrenes/chemistry , Thiophenes , Water Pollutants, Chemical/analysis
9.
Horm Metab Res ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38588699

ABSTRACT

This study aims to establish a random forest model for detecting the severity of Graves Orbitopathy (GO) and identify significant classification factors. This is a hospital-based study of 199 patients with GO that were collected between December 2019 and February 2022. Clinical information was collected from medical records. The severity of GO can be categorized as mild, moderate-to-severe, and sight-threatening GO based on guidelines of the European Group on Graves' orbitopathy. A random forest model was constructed according to the risk factors of GO and the main ocular symptoms of patients to differentiate mild GO from severe GO and finally was compared with logistic regression analysis, Support Vector Machine (SVM), and Naive Bayes. A random forest model with 15 variables was constructed. Blurred vision, disease course, thyroid-stimulating hormone receptor antibodies, and age ranked high both in mini-decreased gini and mini decrease accuracy. The accuracy, positive predictive value, negative predictive value, and the F1 Score of the random forest model are 0.83, 0.82, 0.86, and 0.82, respectively. Compared to the three other models, our random forest model showed a more reliable performance based on AUC (0.85 vs. 0.83 vs. 0.80 vs. 0.76) and accuracy (0.83 vs. 0.78 vs. 0.77 vs. 0.70). In conclusion, this study shows the potential for applying a random forest model as a complementary tool to differentiate GO severity.

10.
Exp Hematol Oncol ; 13(1): 43, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637863

ABSTRACT

Chimeric antigen receptors (CAR) are engineered fusion proteins that target T-cells to specific surface antigens of tumor cells to generate effective anti-tumor responses. CAR T-cell therapy is playing an increasingly important role in the treatment of relapsed/refractory B-cell malignancies (R/R BCM). Attempting to make CAR T-cells safer and more effective in treating R/R BCM, various novel engineered CAR T-cell agents are currently in the research and development or clinical trial stages. We have summarized here the latest reports on the novel CAR T-cell therapies for R/R BCM presented at the 2023 ASH Annual Meeting as well as the latest updates in related clinical trials.

11.
J Asthma Allergy ; 17: 391-397, 2024.
Article in English | MEDLINE | ID: mdl-38681237

ABSTRACT

Objective: This study aimed to explore whether saliva pepsin concentration (SPC) could be regarded as a risk factor for the occurrence and unfavorable control of asthma in children with allergic rhinitis. Methods: A prospective study was conducted on a group of 20 consecutive children newly diagnosed with allergic rhinitis and asthma (referred to as the asthma group). All these children underwent fractional exhaled nitric oxide (FeNO) measurement, lung function tests, and assessment of asthma control using the 7-item Childhood Asthma Control Test (C-ACT) score. Simultaneously, a control group consisting of 20 children with simple allergic rhinitis, matched for baseline characteristics, was included. SPC measurement was performed in the two groups. Results: The SPC value was significantly higher in the asthma group than that in the control group (165.0 ± 82.8 ng/mL vs 68.4 ± 34.5 ng/mL) (P < 0.001). In the asthma group, SPC was independently associated with FeNO, the ratio of forced expiratory volume in 1 second (FEV1) to forced vital capacity (FVC), and forced expiratory flow at 50% and 75% of FVC (FEF50 and FEF75) (all P < 0.05). The severity of nasal symptoms evaluated by the visual analogue scale (N-VAS) was independently associated with FEF75, the maximal mid-expiratory flow (MMEF), and C-ACT score (P < 0.05). Conclusion: Direct pepsin exposure and uncontrolled nasal symptoms may play crucial roles in the pathogenesis and progression of childhood allergic asthma. The SPC value can be considered as a risk factor for asthma in children with allergic rhinitis.

12.
J Exp Clin Cancer Res ; 43(1): 124, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658954

ABSTRACT

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a common gastrointestinal tumor and has become an important global health problem. The PI3K/AKT signaling pathway plays a key role in the development of ESCC. CircRNAs have been reported to be involved in the regulation of the PI3K/AKT pathway, but the underlying mechanisms are unclear. Therefore, this study aimed to identify protein-coding circRNAs and investigate their functions in ESCC. METHODS: Differential expression of circRNAs between ESCC tissues and adjacent normal tissues was identified using circRNA microarray analysis. Thereafter, LC-MS/MS was used to identify circPDE5A-encoded novel protein PDE5A-500aa. Molecular biological methods were used to explore the biological functions and regulatory mechanisms of circPDE5A and PDE5A-500aa in ESCC. Lastly, circRNA-loaded nanoplatforms were constructed to investigate the therapeutic translation value of circPDE5A. RESULTS: We found that circPDE5A expression was down-regulated in ESCC cells and tissues and that it was negatively associated with advanced clinicopathological stages and poorer prognosis in ESCC. Functionally, circPDE5A inhibited ESCC proliferation and metastasis in vitro and in vivo by encoding PDE5A-500aa, a key regulator of the PI3K/AKT signaling pathway in ESCC. Mechanistically, PDE5A-500aa interacted with PIK3IP1 and promoted USP14-mediated de-ubiquitination of the k48-linked polyubiquitin chain at its K198 residue, thereby attenuating the PI3K/AKT pathway in ESCC. In addition, Meo-PEG-S-S-PLGA-based reduction-responsive nanoplatforms loaded with circPDE5A and PDE5A-500aa plasmids were found to successfully inhibit the growth and metastasis of ESCC in vitro and in vivo. CONCLUSION: The novel protein PDE5A-500aa encoded by circPDE5A can act as an inhibitor of the PI3K/AKT signaling pathway to inhibit the progression of ESCC by promoting USP14-mediated de-ubiquitination of PIK3IP1 and may serve as a potential target for the development of therapeutic agents.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , RNA, Circular , Ubiquitin Thiolesterase , Ubiquitination , Animals , Female , Humans , Male , Mice , Middle Aged , Cell Line, Tumor , Cell Proliferation , Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 5/genetics , Disease Progression , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Signal Transduction , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics
13.
Behav Sci (Basel) ; 14(4)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38667096

ABSTRACT

Employees suffer from low resources in the workplace because of multiple work roles in project-based organization (PBO). Based on the conservation of resources theory (COR), this study identifies both employee resilience and organizational support as critical personal and job resources. It then examines how servant leadership enhances employee work engagement in PBO through the mediating roles of employee resilience and organizational support. This study uses a questionnaire-based quantitative research design to collect data from 437 employees in PBO. The collected data were analyzed by partial least squares structural equation modeling (PLS-SEM) to test hypotheses. The research findings indicate that servant leadership positively affects work engagement. Additionally, the relationship between servant leadership and work engagement is mediated by employee resilience and organizational support. This study deepens the understanding of how servant leadership promotes work engagement in PBO by providing personal and job resources. The findings deepen our understanding of how servant leadership enhances work engagement in PBO. The findings also provide implications for PBO to enhance sustainable well-being at work and organizational productivity.

14.
Polymers (Basel) ; 16(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38611258

ABSTRACT

To research the effect of hydrogen permeation on the friction characteristics of the seal materials on the hydrogen equipment, the molecular models of 10% PEEK/PTFE composites and its frictional models were established, respectively, and molecular dynamics (MDs) and giant canonical Monte Carlo (GCMC) methods were used to simulate the diffusion coefficient, dissolution coefficient and permeability coefficient of the hydrogen in PEEK/PTFE composites. The effect of a different amount of hydrogen on the friction and wear of PEEK/PTFE composites was also studied. The results showed that few permeations of the hydrogen gas mainly demonstrated having a positive effect on the surface of the PEEK/PTFE composites, and the wear rate of the PEEK/PTFE composites showed a slight decreasing trend. The wear rate of the PEEK/PTFE composites gradually decreased when more hydrogen molecules penetrated the matrix. With the further penetration of the hydrogen molecules, the wear rate and friction coefficient of the PEEK/PTFE composites rapidly increased, showing a negative effect. With the further penetration of the hydrogen molecule, the friction coefficient of the composite displayed a small fluctuation and then a rapid decreasing trend. Meanwhile, effective improvement measures were proposed, and the introduction of the graphene was verified to be effective to reduce the negative effect of the hydrogen permeation, thereby improving the friction performance of the PEEK/PTFE composites.

15.
J Colloid Interface Sci ; 666: 35-46, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38583208

ABSTRACT

Covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) have attracted growing attention in electrochemical energy storage and conversion systems (e.g., Zn-air batteries, ZABs) owing to their structural tunability, ordered porosity and high specific surface area. In this work, for the first time, the three-dimensional (3D) highly open catalyst (CNFs/CoZn-MOF@COF) possessing hierarchical porous structure and high-density active sites of uniform cobalt (Co) nanoparticles and metal-Nx (M-Nx, M = Co and Zn) is demonstrated, which is fabricated using electrospinning technique in combination with MOF/COF hybridization strategy and direct pyrolysis. Benefiting from the well-designed branch-leaf nanostructures, plentiful and uniform active sites on the MOF/COF-derived carbon frameworks, as well as the synergistic effect of multiple active sites, CNFs/CoZn-MOF@COF catalyst achieves superior electrocatalytic activity and stability towards both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with a small potential gap (ΔE = 0.75 V). In situ Raman spectroscopy and X-ray photoelectron spectroscopy results indicate that the CoOOH intermediates are the main active species during OER/ORR. Significantly, both aqueous and all-solid-state rechargeable ZABs assembled with CNFs/CoZn-MOF@COF as the air cathode show high open-circuit potential, outstanding peak power density, large capacity and long cycle life. More impressively, the obtained all-solid-state ZAB also displays superb mechanical flexibility and device stability under different, showcasing great application deformations potential in portable and wearable electronics. This work provides a new insight into the design and exploitation of bifunctional catalysts from MOF/COF hybrid materials for energy storage and conversion devices.

16.
Clin Case Rep ; 12(3): e8649, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38469127

ABSTRACT

The etiology of primary pulmonary angiosarcoma is still unknown. Here we report a case of primary pulmonary angiosarcoma originated from a tuberculous scar and presented as aggressive deterioration with uncontrolled bleeding from capillaries with angiodysplasia.

17.
J Colloid Interface Sci ; 664: 25-32, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38458052

ABSTRACT

Lignin upgrading to various functional products is promising to realize high-value utilization of low-cost and renewable biomass waste, but is still in its infancy. Herein, using industry waste lignosulfonate as the biomass-based carbon source and urea as the dopant, we constructed a heteroatom-doped porous carbon nanosheet structure by a simple NaCl template-assisted pyrolytic strategy. Through the synergistic effect of the NaCl template and urea, the optimized lignin-derived porous carbon catalyst with high content of active nitrogen species and large specific surface area can be obtained. As a result, the fabricated catalysts exhibited excellent electrocatalytic oxygen reduction activity, as well as good methanol tolerance and stability, comparable to that of commercial Pt/C. Moreover, rechargeable Zn-air batteries assembled with this electrocatalyst have a peak power density of up to 150 mW cm-2 and prominent long-term cycling stability. This study offers an inexpensive and efficient way for the massive production of highly active metal-free catalysts from the plentiful, inexpensive and environmentally friendly lignin, offering a good direction for biomass waste recycling and utilization.

18.
Mol Neurodegener ; 19(1): 23, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38462606

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disease in the United States (US). Animal models, specifically mouse models have been developed to better elucidate disease mechanisms and test therapeutic strategies for AD. A large portion of effort in the field was focused on developing transgenic (Tg) mouse models through over-expression of genetic mutations associated with familial AD (FAD) patients. Newer generations of mouse models through knock-in (KI)/knock-out (KO) or CRISPR gene editing technologies, have been developed for both familial and sporadic AD risk genes with the hope to more accurately model proteinopathies without over-expression of human AD genes in mouse brains. In this review, we summarized the phenotypes of a few commonly used as well as newly developed mouse models in translational research laboratories including the presence or absence of key pathological features of AD such as amyloid and tau pathology, synaptic and neuronal degeneration as well as cognitive and behavior deficits. In addition, advantages and limitations of these AD mouse models have been elaborated along with discussions of any sex-specific features. More importantly, the omics data from available AD mouse models have been analyzed to categorize molecular signatures of each model reminiscent of human AD brain changes, with the hope to guide future selection of most suitable models for specific research questions to be addressed in the AD field.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Male , Female , Humans , Mice , Animals , Alzheimer Disease/pathology , tau Proteins/genetics , Amyloid beta-Protein Precursor/genetics , Mice, Transgenic , Disease Models, Animal , Amyloid beta-Peptides
19.
Front Pharmacol ; 15: 1337623, 2024.
Article in English | MEDLINE | ID: mdl-38476331

ABSTRACT

Cardiovascular diseases have become the leading cause of death in urban and rural areas. Myocardial fibrosis is a common pathological manifestation at the adaptive and repair stage of cardiovascular diseases, easily predisposing to cardiac death. Non-coding RNAs (ncRNAs), RNA molecules with no coding potential, can regulate gene expression in the occurrence and development of myocardial fibrosis. Recent studies have suggested that Chinese herbal medicine can relieve myocardial fibrosis through targeting various ncRNAs, mainly including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Thus, ncRNAs are novel drug targets for Chinese herbal medicine. Herein, we summarized the current understanding of ncRNAs in the pathogenesis of myocardial fibrosis, and highlighted the contribution of ncRNAs to the therapeutic effect of Chinese herbal medicine on myocardial fibrosis. Further, we discussed the future directions regarding the potential applications of ncRNA-based drug screening platform to screen drugs for myocardial fibrosis.

20.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(1): 68-71, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38433634

ABSTRACT

Terminally ill patients face multiple difficulties in home care.Home-based palliative care adhering to the concept of whole-person,whole-family,whole-team,and whole-course care is able to meet the needs of terminally ill patients and their families.In this paper,we reported the care history and home-based palliative care process of a patient with end-stage breast tumor and summarized the experience,aiming to provide reference for the future work of home-based palliative care.


Subject(s)
Palliative Care , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...