Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Small ; : e2401123, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38659372

ABSTRACT

Matching the thickness of the graphitic carbon nitride (CN) nanolayer with the charge diffusion length is expected to compensate for the poor intrinsic conductivity and charge recombination in CN for photoelectrochemical cells (PEC). Herein, the compact CN nanolayer with tunable thickness is in situ coated on carbon fibers. The compact packing along with good contact with the substrate improves the electron transport and alleviates the charge recombination. The PEC investigation shows CN nanolayer of 93 nm-thick yields an optimum photocurrent of 116 µA cm-2 at 1.23 V versus RHE, comparable to most micrometer-thick CN layers, with a low onset potential of 0.2 V in 1 m KOH under 1 sun illumination. This optimum performance suggests the electron diffusion length matches with the thickness of the CN nanolayer. Further deposition of NiFe-layered double hydroxide enhanced the surface water oxidation kinetics, delivering an improved photocurrent of 210 µA cm-2 with IPCE of 12.8% at 400 nm. The CN nanolayer also shows extended potential in PEC organic synthesis. This work experimentally reveals the PEC behavior of the nanometer-thick CN layer, providing new insights into CN in the application of energy and environment-related fields.

2.
Sci Adv ; 10(11): eadh1330, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38489373

ABSTRACT

Rare earth elements (REEs), critical to modern industry, are difficult to separate and purify, given their similar physicochemical properties originating from the lanthanide contraction. Here, we systematically study the transport of lanthanide ions (Ln3+) in artificially confined angstrom-scale two-dimensional channels using MoS2-based building blocks in an aqueous environment. The results show that the uptake and permeability of Ln3+ assume a well-defined volcano shape peaked at Sm3+. This transport behavior is rooted from the tradeoff between the barrier for dehydration and the strength of interactions of lanthanide ions in the confinement channels, reminiscent of the Sabatier principle. Molecular dynamics simulations reveal that Sm3+, with moderate hydration free energy and intermediate affinity for channel interaction, exhibit the smallest dehydration degree, consequently resulting in the highest permeability. Our work not only highlights the distinct mass transport properties under extreme confinement but also demonstrates the potential of dialing confinement dimension and chemistry for greener REEs separation.

3.
Proc Natl Acad Sci U S A ; 121(2): e2313616121, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38165939

ABSTRACT

Emulating angstrom-scale dynamics of the highly selective biological ion channels is a challenging task. Recent work on angstrom-scale artificial channels has expanded our understanding of ion transport and uptake mechanisms under confinement. However, the role of chemical environment in such channels is still not well understood. Here, we report the anomalously enhanced transport and uptake of ions under confined MoS2-based channels that are ~five angstroms in size. The ion uptake preference in the MoS2-based channels can be changed by the selection of surface functional groups and ion uptake sequence due to the interplay between kinetic and thermodynamic factors that depend on whether the ions are mixed or not prior to uptake. Our work offers a holistic picture of ion transport in 2D confinement and highlights ion interplay in this regime.

4.
Proc Natl Acad Sci U S A ; 120(38): e2303466120, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37695920

ABSTRACT

Low-grade wind with airspeed Vwind < 5 m/s, while distributed far more abundantly, is still challenging to extract because current turbine-based technologies require particular geography (e.g., wide-open land or off-shore regions) with year-round Vwind > 5 m/s to effectively rotate the blades. Here, we report that low-speed airflow can sensitively enable directional flow within nanowire-anchored ionic liquid (IL) drops. Specifically, wind-induced air/liquid friction continuously raises directional leeward fluid transport in the upper portion, whereas three-phase contact line (TCL) pinning blocks further movement of IL. To remove excessive accumulation of IL near TCL, fluid dives, and headwind flow forms in the lower portion, as confirmed by microscope observation. Such stratified circulating flow within single drop can generate voltage output up to ~0.84 V, which we further scale up to ~60 V using drop "wind farms". Our results demonstrate a technology to tap the widespread low-grade wind as a reliable energy resource.

5.
Science ; 379(6638): 1242-1247, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36952427

ABSTRACT

Two-dimensional transition-metal carbides and nitrides (MXenes) are a large family of materials actively studied for various applications, especially in the field of energy storage. MXenes are commonly synthesized by etching the layered ternary compounds, called MAX phases. We demonstrate a direct synthetic route for scalable and atom-economic synthesis of MXenes, including compounds that have not been synthesized from MAX phases, by the reactions of metals and metal halides with graphite, methane, or nitrogen. The direct synthesis enables chemical vapor deposition growth of MXene carpets and complex spherulite-like morphologies that form through buckling and release of MXene carpet to expose fresh surface for further reaction. The directly synthesized MXenes showed excellent energy storage capacity for lithium-ion intercalation.

6.
Proc Natl Acad Sci U S A ; 119(31): e2200751119, 2022 Aug 02.
Article in English | MEDLINE | ID: mdl-35878020

ABSTRACT

The lithium supply issue mainly lies in the inability of current mining methods to access lithium sources of dilute concentrations and complex chemistry. Electrochemical intercalation has emerged as a highly selective method for lithium extraction; however, limited source compositions have been studied, which is insufficient to predict its applicability to the wide range of unconventional water sources (UWS). This work addresses the feasibility and identifies the challenges of Li extraction by electrochemical intercalation from UWS, by answering three questions: 1) Is there enough Li in UWS? 2) How would the solution compositions affect the competition of Li+ to major ions (Na+/Mg2+/K+/Ca2+)? 3) Does the complex solution composition affect the electrode stability? Using one-dimensional olivine FePO4 as the model electrode, we show the complicated roles of major ions. Na+ acts as the competitor ion for host storage sites. The competition from Na+ grants Mg2+ and Ca2+ being only the spectator ions. However, Mg2+ and Ca2+ can significantly affect the charge transfer of Li+ and Na+, therefore affecting the Li selectivity. We point to improving the selectivity of Li+ to Na+ as the key challenge for broadening the minable UWS using the olivine host.

7.
iScience ; 25(4): 104044, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35359810

ABSTRACT

Controlling the ion transport through graphene oxide (GO) membrane is challenging, particularly in the aqueous environment due to its strong swelling tendency. Fine-tuning the interlayer spacing and chemistry is critical to create highly selective membranes. We investigate the effect of single-site divalent cations in tuning GO membrane properties. Competitive ionic permeation test indicates that Cu2+ cations dominate the transport through the 2D channels of GO membrane over other cations (Mg2+/Ca2+/Co2+). Without/With the single-site M2+ modifications, pristine GO, Mg-GO, Ca-GO, and Cu-GO membranes show interlayer spacings of ∼13.6, 15.6, 14.5, and 12.3 Å in wet state, respectively. The Cu-GO membrane shows a two-fold decrease of NaCl (1 M) permeation rate comparing to pristine GO, Mg-GO, and Ca-GO membranes. In reverse osmosis tests using 1000 ppm NaCl and Na2SO4 as feeds, Cu-GO membrane shows rejection of ∼78% and ∼94%, respectively, which are 5%-10% higher than its counterpart membranes.

8.
Nat Commun ; 13(1): 1291, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35277510

ABSTRACT

Circadian humidity fluctuation is an important factor that affects human life all over the world. Here we show that spherical cap-shaped ionic liquid drops sitting on nanowire array are able to continuously output electricity when exposed to outdoor air, which we attribute to the daily humidity fluctuation induced directional capillary flow. Specifically, ionic liquid drops could absorb/desorb water around the liquid/vapor interface and swell/shrink depending on air humidity fluctuation. While pinning of the drop by nanowire array suppresses advancing/receding of triple-phase contact line. To maintain the surface tension-regulated spherical cap profile, inward/outward flow arises for removing excess fluid from the edge or filling the perimeter with fluid from center. This moisture absorption/desorption-caused capillary flow is confirmed by in-situ microscope imaging. We conduct further research to reveal how environmental humidity affects flow rate and power generation performance. To further illustrate feasibility of our strategy, we combine the generators to light up a red diode and LCD screen. All these results present the great potential of tiny humidity fluctuation as an easily accessible anytime-and-anywhere small-scale green energy resource.


Subject(s)
Renewable Energy , Water , Electricity , Humans , Humidity , Surface Tension
9.
Adv Sci (Weinh) ; 9(12): e2104857, 2022 04.
Article in English | MEDLINE | ID: mdl-35187858

ABSTRACT

The valance of Mo is critical for FeMo cofactor in ambient ammonia synthesis. However, the valence effect of Mo has not been well studied in heterogeneous nanoparticle catalysts for electrochemical nitrogen reduction reaction (NRR) due to the dissolution of Mo as MoO42- in alkaline electrolytes. Here, a MoO2+x catalyst enriched with surface Mo6+ is reported. The Mo6+ is stabilized by a native oxide layer to prevent corrosion and its speciation is identified as (MoO3 )n clusters. This native layer with Mo6+ suppresses the hydrogen evolution significantly and promotes the activation of nitrogen as supported by both experimental characterization and theoretical calculation. The as-prepared MoO2+x catalyst shows a high ammonia yield of 3.95 µg mgcat-1 h-1 with a high Faradaic efficiency of 22.1% at -0.2 V versus reversible hydrogen electrode, which is much better than the MoO2 catalyst with Mo6+ etched away. The accuracy of experimental results for NRR is confirmed by various control experiments and quantitative isotope labeling.


Subject(s)
Ammonia , Nitrogen , Catalysis , Electrodes , Hydrogen/chemistry , Nitrogen/chemistry
10.
Adv Mater ; 34(4): e2106410, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34715720

ABSTRACT

Humidity-based power generation that converts internal energy of water molecules into electricity is an emerging approach for harvesting clean energy from nature. Here it is proposed that intrinsic gradient within a humidity field near sweating surfaces, such as rivers, soil, or animal skin, is a promising power resource when integrated with liquid-infused nanofluidics. Specifically, capillary-stabilized ionic liquid (IL, Omim+ Cl- ) film is exposed to the above humidity field to create a sustained transmembrane water-content difference, which enables asymmetric ion-diffusion across the nanoconfined fluidics, facilitating long-term electricity generation with the power density of ≈12.11 µW cm-2 . This high record is attributed to the nanoconfined IL that integrates van der Waals and electrostatic interactions to block movement of Omim+ clusters while allowing for directional diffusion of moisture-liberated Cl+ . This humidity gradient triggers large ion-diffusion flux for power generation indicates great potential of sweating surfaces considering that most of the earth is covered by water or soil.

11.
Nano Lett ; 20(11): 7844-7851, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33021379

ABSTRACT

Restacked two-dimensional (2D) materials represent a new class of membranes for water-ion separations. Understanding the interplay between the 2D membrane's structure and the constituent material's surface chemistry to its ion sieving properties is crucial for further membrane development. Here, we reveal, and tune via covalent functionalization, the structure of MoS2-based membranes. We find features on both the ∼1 nm (interlayer spacing) and ∼100 nm (mesoporous voids between layers) length scales that evolve with the hydration level. The functional groups act as permanent molecular spacers, preventing local impermeability caused by irreversible restacking and promoting the uniform rehydration of the membrane. Molecular dynamics simulations show that the choice of functional group tunes the structure of water within the MoS2 channel and consequently determines the hydrated interlayer spacing. We demonstrate that MoS2 membranes functionalized with acetic acid have consistently ∼92% rejection of Na2SO4 with a flux of ∼1.5 lm-2 hr-1 bar-1.

12.
Nano Lett ; 20(4): 2879-2885, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32212665

ABSTRACT

Identifying highly selective catalysts and accurately measuring NH3 yield without false-positives from contaminations remain two challenges in electrochemical nitrogen reduction reaction (NRR). Here, we report N-defective carbon nitride grown on carbon paper (CN/C) as a highly selective electrocatalyst. The NH3 yield was determined reliably by the slope of mNH3-time plot rather than averaging the accumulated amount over time. Results showed the as-synthesized CN/C600 (synthesized at 600 °C) with a higher density of C=N-C N2C vacancies achieved an NH3 production of 2.9 µg mgcat.-1 h-1 at -0.3 V (versus RHE), ∼5.7-fold higher than CN/C500. The Faradaic efficiency for CN/C600 is among the highest of 62.1%, 33.9%, and 16.8% at -0.1 V, -0.2 V, and -0.3 V, respectively. The NH3 production was verified by isotope 15N2 experiments. Further increase of N-defects on CN/C600 using plasma etching led to higher NH3 yield than comparably larger current, pointing to N-defects sites for promoting NRR.

13.
Nano Lett ; 20(3): 2175-2182, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32096644

ABSTRACT

At the mesoscopic level of commercial lithium ion battery (LIB), it is widely believed that the poor contacts between current collector (CC) and electrode materials (EM) lead to weak adhesions and large interfacial electric resistances. However, systematic quantitative analyses of the influence of the interfacial properties of CC are still scarce. Here, we built a model interface between CC and electrode materials by directly growing hierarchical graphene films on commercial Al foil CC, and we performed systematic quantitative studies of the interfacial properties therein. Our results show that the interfacial electric resistance dominates, i.e. ∼2 orders of magnitude higher than that of electrode materials. The interfacial resistance could be eliminated by hierarchical graphene interlayer. Cathode on CC with eliminated interfacial resistance could deliver much improved power density outputs. Our work quantifies the mesoscopic factors influencing the battery performance and offers practical guidelines of boosting the performance of LIBs and beyond.

14.
Nat Commun ; 11(1): 541, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992713

ABSTRACT

The fast development of high-resolution electron microscopy (EM) demands a background-noise-free substrate to support the specimens, where atomically thin graphene membranes can serve as an ideal candidate. Yet the preparation of robust and ultraclean graphene EM grids remains challenging. Here we present a polymer- and transfer-free direct-etching method for batch fabrication of robust ultraclean graphene grids through membrane tension modulation. Loading samples on such graphene grids enables the detection of single metal atoms and atomic-resolution imaging of the iron core of ferritin molecules at both room- and cryo-temperature. The same kind of hydrophilic graphene grid allows the formation of ultrathin vitrified ice layer embedded most protein particles at the graphene-water interface, which facilitates cryo-EM 3D reconstruction of archaea 20S proteasomes at a record high resolution of ~2.36 Å. Our results demonstrate the significant improvements in image quality using the graphene grids and expand the scope of EM imaging.


Subject(s)
Graphite/chemistry , Microscopy, Electron/instrumentation , Microscopy, Electron/methods , Chemical Phenomena , Cryoelectron Microscopy/methods , Electrons , Equipment Design , Image Processing, Computer-Assisted , Membranes , Polymers , Proteins
15.
Sci Adv ; 5(8): eaaw8337, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31448331

ABSTRACT

Directly incorporating heteroatoms into the hexagonal lattice of graphene during growth has been widely used to tune its electrical properties with superior doping stability, uniformity, and scalability. However the introduction of scattering centers limits this technique because of reduced carrier mobilities and conductivities of the resulting material. Here, we demonstrate a rapid growth of graphitic nitrogen cluster-doped monolayer graphene single crystals on Cu foil with remarkable carrier mobility of 13,000 cm2 V-1 s-1 and a greatly reduced sheet resistance of only 130 ohms square-1. The exceedingly large carrier mobility with high n-doping level was realized by (i) incorporation of nitrogen-terminated carbon clusters to suppress the carrier scattering and (ii) elimination of all defective pyridinic nitrogen centers by oxygen etching. Our study opens up an avenue for the growth of high-mobility/conductivity doped graphene with tunable work functions for scalable graphene-based electronic and device applications.

16.
Small ; 14(3)2018 01.
Article in English | MEDLINE | ID: mdl-29125685

ABSTRACT

Future applications of graphene rely highly on the production of large-area high-quality graphene, especially large single-crystalline graphene, due to the reduction of defects caused by grain boundaries. However, current large single-crystalline graphene growing methodologies are suffering from low growth rate and as a result, industrial graphene production is always confronted by high energy consumption, which is primarily caused by high growth temperature and long growth time. Herein, a new growth condition achieved via ethane being the carbon feedstock to achieve low-temperature yet rapid growth of large single-crystalline graphene is reported. Ethane condition gives a growth rate about four times faster than methane, achieving about 420 µm min-1 for the growth of sub-centimeter graphene single crystals at temperature about 1000 °C. In addition, the temperature threshold to obtain graphene using ethane can be reduced to 750 °C, lower than the general growth temperature threshold (about 1000 °C) with methane on copper foil. Meanwhile ethane always keeps higher graphene growth rate than methane under the same growth temperature. This study demonstrates that ethane is indeed a potential carbon source for efficient growth of large single-crystalline graphene, thus paves the way for graphene in high-end electronical and optoelectronical applications.

17.
Adv Mater ; 29(47)2017 Dec.
Article in English | MEDLINE | ID: mdl-29076181

ABSTRACT

Aluminum (Al) foil, as the most accepted cathode current collector for lithium-ion batteries (LIBs), is susceptible to local anodic corrosions during long-term operations. Such corrosions could lead to the deterioration or even premature failure of the batteries and are generally believed to be a bottleneck for next-generation 5 V LIBs. Here, it is demonstrated that Al foil armored by conformal graphene coating exhibits significantly reinforced anodic corrosion resistance in both LiPF6 and lithium bis(trifluoromethanesulphonyl) imide (LiTFSI) based electrolytes. Moreover, LiMn2 O4 cells using graphene-armored Al foil as current collectors (LMO/GA) demonstrate enhanced electrochemical performance in comparison with those using pristine Al foil (LMO/PA). The long-term discharge capacity retention of LMO/GA cell after ≈950 h straight operations at low rate (0.5 C) reaches up to 91%, remarkably superior to LMO/PA cell (75%). The self-discharge propensity of LMO/GA is clearly relieved and the rate/power performance is also improved with graphene mediations. This work not only contributes to the long-term stable operations of LIBs but also might catalyze the deployment of 5 V LIBs in the future.

18.
Adv Mater ; 29(38)2017 Oct.
Article in English | MEDLINE | ID: mdl-28833544

ABSTRACT

Efficient solar-thermal energy conversion is essential for the harvesting and transformation of abundant solar energy, leading to the exploration and design of efficient solar-thermal materials. Carbon-based materials, especially graphene, have the advantages of broadband absorption and excellent photothermal properties, and hold promise for solar-thermal energy conversion. However, to date, graphene-based solar-thermal materials with superior omnidirectional light harvesting performances remain elusive. Herein, hierarchical graphene foam (h-G foam) with continuous porosity grown via plasma-enhanced chemical vapor deposition is reported, showing dramatic enhancement of broadband and omnidirectional absorption of sunlight, which thereby can enable a considerable elevation of temperature. Used as a heating material, the external solar-thermal energy conversion efficiency of the h-G foam impressively reaches up to ≈93.4%, and the solar-vapor conversion efficiency exceeds 90% for seawater desalination with high endurance.

19.
Nano Lett ; 17(6): 3681-3687, 2017 06 14.
Article in English | MEDLINE | ID: mdl-28471678

ABSTRACT

Silicon-based materials are considered as strong candidates to next-generation lithium ion battery anodes because of their ultrahigh specific capacities. However, the pulverization and delamination of electrochemical active materials originated from the huge volume expansion (>300%) of silicon during the lithiation process results in rapid capacity fade, especially in high mass loading electrodes. Here we demonstrate that direct chemical vapor deposition (CVD) growth of vertical graphene nanosheets on commercial SiO microparticles can provide a stable conducting network via interconnected vertical graphene encapsulation during lithiation, thus remarkably improving the cycling stability in high mass loading SiO anodes. The vertical graphene encapsulated SiO (d-SiO@vG) anode exhibits a high capacity of 1600 mA h/g and a retention up to 93% after 100 cycles at a high areal mass loading of 1.5 mg/cm2. Furthermore, 5 wt % d-SiO@vG as additives increased the energy density of traditional graphite/NCA 18650 cell by ∼15%. We believe that the results strongly imply the important role of CVD-grown vertical graphene encapsulation in promoting the commercial application of silicon-based anodes.

20.
Adv Mater ; 29(26)2017 Jul.
Article in English | MEDLINE | ID: mdl-28464279

ABSTRACT

The atomically thin 2D nature of suspended graphene membranes holds promising in numerous technological applications. In particular, the outstanding transparency to electron beam endows graphene membranes great potential as a candidate for specimen support of transmission electron microscopy (TEM). However, major hurdles remain to be addressed to acquire an ultraclean, high-intactness, and defect-free suspended graphene membrane. Here, a polymer-free clean transfer of sub-centimeter-sized graphene single crystals onto TEM grids to fabricate large-area and high-quality suspended graphene membranes has been achieved. Through the control of interfacial force during the transfer, the intactness of large-area graphene membranes can be as high as 95%, prominently larger than reported values in previous works. Graphene liquid cells are readily prepared by π-π stacking two clean single-crystal graphene TEM grids, in which atomic-scale resolution imaging and temporal evolution of colloid Au nanoparticles are recorded. This facile and scalable production of clean and high-quality suspended graphene membrane is promising toward their wide applications for electron and optical microscopy.

SELECTION OF CITATIONS
SEARCH DETAIL
...