Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Angew Chem Int Ed Engl ; : e202411158, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008194

ABSTRACT

The selective borylation of specific C-H bonds in organic synthesis remains a formidable challenge. In this study, we present a novel spirobipyridine ligand that features a binaphthyl backbone. This ligand facilitates the iridium-catalyzed selective C-H borylation of benzene derivatives. The ligand is designed with "side-arm-wall" substituents that allow vicinal di- or multi-substituted benzene derivatives to approach metal center and effectively block other reactive sites by non-covalent interactions with substrates. The effectiveness of this strategy is demonstrated by the successful selective distal C-H activation of various alkaloids and its broad compatibility with functional groups.

2.
Article in English | MEDLINE | ID: mdl-38834238

ABSTRACT

Although randomised controlled trials are considered the gold standard in clinical research, they are not always feasible due to limitations in the study population, challenges in obtaining evidence, high costs and ethical considerations. As a result, single-arm trial designs have emerged as one of the methods to address these issues. Single-arm trials are commonly applied to study advanced-stage cancer, rare diseases, emerging infectious diseases, new treatment methods and medical devices. Single-arm trials have certain ethical advantages over randomised controlled trials, such as providing equitable treatment, respecting patient preferences, addressing rare diseases and timely management of adverse events. While single-arm trials do not adhere to the principles of randomisation and blinding in terms of scientific rigour, they still incorporate principles of control, balance and replication, making the design scientifically reasonable. Compared with randomised controlled trials, single-arm trials require fewer sample sizes and have shorter trial durations, which can help save costs. Compared with cohort studies, single-arm trials involve intervention measures and reduce external interference, resulting in higher levels of evidence. However, single-arm trials also have limitations. Without a parallel control group, there may be biases in interpreting the results. In addition, single-arm trials cannot meet the requirements of randomisation and blinding, thereby limiting their evidence capacity compared with randomised controlled trials. Therefore, researchers consider using single-arm trials as a trial design method only when randomised controlled trials are not feasible.

3.
Angew Chem Int Ed Engl ; : e202409862, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866703

ABSTRACT

Isotopically labeled alkanes play a crucial role in organic and pharmaceutical chemistry. While some deuterated methylating agents are readily available, the limited accessibility of other deuteroalkyl reagents has hindered the synthesis of corresponding products. In this study, we introduce a nickel-catalyzed system that facilitates the synthesis of various deuterium-labeled alkanes through the hydrodeuteroalkylation of d2-labeled alkyl TT salts with unactivated alkenes. Diverging from traditional deuterated alkyl reagents, alkyl thianthrenium (TT) salts can effectively and selectively introduce deuterium at α position of alkyl chains using D2O as the deuterium source via a single-step pH-dependent hydrogen isotope exchange (HIE). Our method allows for high deuterium incorporation, and offers precise control over the site of deuterium insertion within an alkyl chain. This technique proves to be invaluable for the synthesis of various deuterium-labeled compounds, especially those of pharmaceutical relevance.

4.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891958

ABSTRACT

The plant MADS-box transcription factor family is a major regulator of plant flower development and reproduction, and the AGAMOUS-LIKE11/SEEDSTICK (AGL11/STK) subfamily plays conserved functions in the seed development of flowering plants. Camellia japonica is a world-famous ornamental flower, and its seed kernels are rich in highly valuable fatty acids. Seed abortion has been found to be common in C. japonica, but little is known about how it is regulated during seed development. In this study, we performed a genome-wide analysis of the MADS-box gene the in C. japonica genome and identified 126 MADS-box genes. Through gene expression profiling in various tissue types, we revealed the C/D-class MADS-box genes were preferentially expressed in seed-related tissues. We identified the AGL11/STK-like gene, CjSTK, and showed that it contained a typical STK motif and exclusively expressed during seed development. We found a significant increase in the CjSTK expression level in aborted seeds compared with normally developing seeds. Furthermore, overexpression of CjSTK in Arabidopsis thaliana caused shorter pods and smaller seeds. Taken together, we concluded that the fine regulation of the CjSTK expression at different stages of seed development is critical for ovule formation and seed abortion in C. japonica. The present study provides evidence revealing the regulation of seed development in Camellia.


Subject(s)
Camellia , Gene Expression Regulation, Plant , MADS Domain Proteins , Plant Proteins , Seeds , Camellia/genetics , Camellia/metabolism , Camellia/growth & development , Seeds/genetics , Seeds/growth & development , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Profiling , Multigene Family , Genome, Plant , Genome-Wide Association Study
5.
Nat Commun ; 15(1): 5067, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871683

ABSTRACT

Deuterium labeling compounds play a crucial role in organic and pharmaceutical chemistry. The synthesis of such compounds typically involves deuterated building blocks, allowing for the incorporation of deuterium atoms and functional groups into a target molecule in a single step. Unfortunately, the limited availability of synthetic approaches to deuterated synthons has impeded progress in this field. Here, we present an approach utilizing alkyl-substituted thianthrenium salts that efficiently and selectively introduce deuterium at the α position of alkyl chains through a pH-dependent HIE process, using D2O as the deuterium source. The resulting α-deuterated alkyl thianthrenium salts, which bear two deuterium atoms, exhibit excellent selectivity and deuterium incorporation in electrophilic substitution reactions. Through in situ formation of isotopically labelled alkyl halides, these thianthrenium salts demonstrate excellent compatibility in a series of metallaphotoredox cross-electrophile coupling with (hetero)aryl, alkenyl, alkyl bromides, and other alkyl thianthrenium salts. Our technique allows for a wide range of substrates, high deuterium incorporation, and precise control over the site of deuterium insertion within a molecule such as the benzyl position, allylic position, or any alkyl chain in between, as well as neighboring heteroatoms. This makes it invaluable for synthesizing various deuterium-labeled compounds, especially those with pharmaceutical significance.

6.
J Am Chem Soc ; 146(26): 17587-17594, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38913452

ABSTRACT

Sulfinamides have been widely used in organic synthesis, with research on their preparation spanning more than a century. Despite advancements in catalytic methodologies, creating sulfur stereocenters within these molecules remains a significant challenge. In this study, we present an effective and versatile method for synthesizing a diverse range of S-chirogenic sulfinamides through catalytic asymmetric aryl addition to sulfinylamines. By utilizing a nickel complex as a catalyst, this process exhibits impressive enantioselectivity and can incorporate various arylboronic acids at the sulfur position. The resulting synthetic sulfinamides are stable and highly adaptable, allowing for their conversion to a variety of sulfur-containing compounds. Our study also incorporates detailed experimental and computational studies to elucidate the reaction mechanism and factors influencing enantioselectivity.

7.
Oncol Lett ; 28(2): 344, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38872865

ABSTRACT

Gastric-type endocervical adenocarcinoma (GEA) is an uncommon and highly aggressive malignancy, characterized by non-specific clinical manifestations. The limited number of documented cases poses significant challenges in achieving an early preoperative diagnosis. In the present study, two cases of GEA in female patients, aged 46 and 39 years, who presented with the chief complaint of profuse vaginal discharge are described. Both patients underwent a total hysterectomy and bilateral adnexectomy, leading to the definitive diagnosis of GEA through routine pathological and immunohistochemical examination. Following surgery, case one received conventional chemotherapy with paclitaxel and carboplatin, demonstrating no evidence of recurrence during a follow-up period of >2 years. At present, patient B has been followed up for >1 year without any signs of disease recurrence. Given the rarity and diagnostic challenges associated with GEA, further investigations into its pathogenesis and diagnostic modalities are warranted. Additionally, due to its poor prognosis, close surveillance is essential for monitoring potential recurrences. Reporting such cases is crucial in aiding clinicians to make accurate diagnoses and treatment decisions.

8.
Front Plant Sci ; 15: 1378418, 2024.
Article in English | MEDLINE | ID: mdl-38872893

ABSTRACT

Introduction: The strong aromatic characteristics of the tender leaves of Toona sinensis determine their quality and economic value. Methods and results: Here, GC-MS analysis revealed that caryophyllene is a key volatile compound in the tender leaves of two different T. sinensis varieties, however, the transcriptional mechanisms controlling its gene expression are unknown. Comparative transcriptome analysis revealed significant enrichment of terpenoid synthesis pathway genes, suggesting that the regulation of terpenoid synthesis-related gene expression is an important factor leading to differences in aroma between the two varieties. Further analysis of expression levels and genetic evolution revealed that TsTPS18 is a caryophyllene synthase, which was confirmed by transient overexpression in T. sinensis and Nicotiana benthamiana leaves. Furthermore, we screened an AP2/ERF transcriptional factor ERF-IX member, TsERF66, for the potential regulation of caryophyllene synthesis. The TsERF66 had a similar expression trend to that of TsTPS18 and was highly expressed in high-aroma varieties and tender leaves. Exogenous spraying of MeJA also induced the expression of TsERF66 and TsTPS18 and promoted the biosynthesis of caryophyllene. Transient overexpression of TsERF66 in T. sinensis significantly promoted TsTPS18 expression and caryophyllene biosynthesis. Discussion: Our results showed that TsERF66 promoted the expression of TsTPS18 and the biosynthesis of caryophyllene in T. sinensis leaves, providing a strategy for improving the aroma of tender leaves.

9.
Nat Commun ; 15(1): 4445, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789453

ABSTRACT

The noncovalent interactions of ammonium ion with multidentate oxygen-based host has never been reported as a reacting center in catalytic reactions. In this work, we report a reactivity enhancement process enabled by non-covalent interaction of ammonium ion, achieving the C-H functionalization of polyethylene glycols with acrylates by utilizing photoinduced co-catalysis of iridium and quinuclidine. A broad scope of alkenes can be tolerated without observing significant degradation. Moreover, this cyano-free condition respectively allows the incorporation of bioactive molecules and the PEGylation of dithiothreitol-treated bovine serum albumin, showing great potentials in drug delivery and protein modification. DFT calculations disclose that the formed α-carbon radical adjacent to oxygen-atom is reduced directly by iridium before acrylate addition. And preliminary mechanistic experiments reveal that the noncovalent interaction of PEG chain with the formed quinuclidinium species plays a unique role as a catalytic site by facilitating the proton transfer and ultimately enabling the transformation efficiently.

10.
J Am Chem Soc ; 146(22): 15453-15463, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38795043

ABSTRACT

In contrast to the asymmetric synthesis of molecules with a single stereocenter or 1,2-adjacent stereocenters, the simultaneous construction of acyclic 1,3-nonadjacent stereocenters via a single catalyst in an enantioselective and diastereoselective manner remains a formidable challenge. Here, we demonstrate the enantioselective and diastereodivergent construction of 1,3-nonadjacent stereocenters through Ni-catalyzed reductive cyclization/cross-coupling of alkene-tethered aryl bromides and α-bromoamides, which represents the major remaining stereochemical challenge of cyclization/difunctionalization of alkenes. Using Ming-Phos as ligand, a diverse set of oxindoles containing 1,3-nonadjacent stereocenters were obtained with high levels of enantio- and diastereoselectivity. Mechanistic experiments and density functional theory calculations indicate that magnesium salt plays a key role in controlling the diastereoselectivity. Furthermore, another set of complementary stereoisomeric products were constructed from the same set of starting materials using Ph-Phox as ligand.

11.
J Am Chem Soc ; 146(18): 12691-12701, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38676653

ABSTRACT

Aliphatic strained rings have been increasingly applied in medicinal chemistry due to their beneficial physicochemical and pharmacokinetic properties. However, the divergent synthesis of enantioenriched cyclobutane derivatives with various structural patterns continues to be a significant challenge. Here, we disclose a palladium-catalyzed enantioselective desymmetrization of cyclobutenes, resulting in a series of hydroarylation and 1,2- and 1,3-diarylation products via the interceptions of a common Heck intermediate. Mechanistic investigations provide valuable insights into understanding the catalytic mode of the palladium catalysts and the observed variations in the deuterium-responsive behavior during reactions. Furthermore, the synthetic utility is demonstrated in the syntheses of deuterated drug candidate belaperidone skeletons and pseudosymmetrical truxinic acid-type derivatives.

12.
Nat Commun ; 15(1): 2914, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575585

ABSTRACT

Carbo- and heterocycles are frequently used as crucial scaffolds in natural products, fine chemicals, and biologically and pharmaceutically active compounds. Transition-metal-catalyzed cyclization of 1,6-enynes has emerged as a powerful strategy for constructing functionalized carbo- and heterocycles. Despite significant progress, the regioselectivity of alkyne functionalization is entirely substrate-dependent. And only exo-cyclization/cross-coupling products can be obtained, while endo-selective cyclization/cross-coupling remains elusive and still poses a formidable challenge. In this study, we disclose a nickel-catalyzed switchable arylation/cyclization of 1,6-enynes in which the nature of the ligand dictates the regioselectivity of alkyne arylation, while the electrophilic trapping reagents determine the selectivity of the cyclization mode. Specifically, using a commercially available 1,10-phenanthroline as a ligand facilitates trans-arylation/cyclization to obtain seven-membered ring products, while a 2-naphthyl-substituted bisbox ligand promotes cis-arylation/cyclization to access six-membered ring products. Diastereoselective cyclizations have also been developed for the synthesis of enantioenriched piperidines and azepanes, which are core structural elements of pharmaceuticals and natural products possessing important biological activities. Furthermore, experimental and density functional theory studies reveal that the regioselectivity of the alkyne arylation process is entirely controlled by the steric hindrance of the ligand; the reaction mechanism involves exo-cyclization followed by Dowd-Beckwith-type ring expansion to form endo-cyclization products.

14.
J Am Chem Soc ; 146(11): 7419-7430, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38447583

ABSTRACT

The first earth-abundant transition metal Ni-catalyzed highly regio- and enantioselective semihydrogenation of racemic tetrasubstituted allenes via a kinetic resolution process as a challenging task was well established. This protocol furnishes expedient access to a diversity of structurally important enantioenriched tetrasubstituted allenes and chiral allylic molecules with high regio-, enantio-, and Z/E-selectivity. Remarkably, this semihydrogenation proceeded with one carbon-carbon double bond of allenes, which was regioselective complementary to the Rh-catalyzed asymmetric version. Deuterium labeling experiments and density functional theory (DFT) calculations were carried out to reveal the reasonable reaction mechanism and explain the regio-/stereoselectivity.

15.
Nat Commun ; 15(1): 2780, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555370

ABSTRACT

Herein, we report an electroreduction of unactivated alkyl alkenes enabled by [Fe]-H, which is provided through the combination of anodic iron salts and the silane generated in situ via cathodic reduction, using H2O as an H-source. The catalytic amounts of Si-additive work as an H-carrier from H2O to generate a highly active silane species in situ under continuous electrochemical conditions. This approach shows a broad substrate scope and good functional group compatibility. In addition to hydrogenation, the use of D2O instead of H2O provides the desired deuterated products in good yields with excellent D-incorporation (up to >99%). Further late-stage hydrogenation of complex molecules and drug derivatives demonstrate potential application in the pharmaceutical industry. Mechanistic studies are performed and provide support for the proposed mechanistic pathway.

16.
J Opt Soc Am A Opt Image Sci Vis ; 41(3): 424-434, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38437433

ABSTRACT

Underwater wireless optical communication is widely considered in the field of underwater communication due to its high bandwidth and low latency. In a real transmission link, the temperature and salinity of seawater, chlorophyll concentration, and bubble density vary with ocean depth. Therefore, the depth of the optical transmitter in seawater and the tilt angle of the beam will exhibit different beam transmission characteristics. In this paper, an underwater oblique-range layered channel model considering the combined effects of dynamic turbulence, absorption, and scattering is developed based on real data of seawater at different depths measured by the Global Ocean Observing Buoy Argo and the Woods Hole Oceanographic Institution BCO-DMO. The effects of transmission distance, transmitter tilt angle, and transmitter depth on the oblique-range transmission characteristics of the beam in seawater are discussed. The simulation results show that, at the same transmission distance, the beam centroid displacement increases with an increase in transmitter depth only when the transmitter is located above the interior of the thermocline. When the transmitter is located below the interior of the thermocline, the influence of the transmitter tilt angle on the beam centroid displacement decreases. This indicates that at different depths within the interior of the thermocline, the optical beam transmission characteristics exhibit significant variations.

17.
BMC Biol ; 22(1): 50, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414012

ABSTRACT

BACKGROUND: The formation and domestication of ornamental traits are influenced by various aspects, such as the recognition of esthetic values and cultural traditions. Camellia japonica is widely appreciated and domesticated around the world mainly due to its rich variations in ornamental traits. Ornamental camellias have a diverse range of resources, including different bud variations from Camellia spp. as well as inter- and intra- specific hybridization. Despite research on the formation of ornamental traits, a basic understanding of their genetics and genomics is still lacking. RESULTS: Here, we report the chromosomal-level reference genome of C. japonica through combining multiple DNA-sequencing technologies and obtain a high-density genetic linkage map of 4255 markers by sequencing 98 interspecific F1 hybrids between C. japonica and C. chekiangoleosa. We identify two whole-genome duplication events in C. japonica: one is a shared ancient γ event, and the other is revealed to be specific to genus Camellia. Based on the micro-collinearity analysis, we find large-scale segmental duplication of chromosome 8, resulting to two copies of the AGAMOUS loci, which may play a key role in the domestication of floral shapes. To explore the regulatory mechanisms of seasonal flowering, we have analyzed year-round gene expression patterns of C. japonica and C. azalea-a sister plant of continuous flowering that has been widely used for cross breeding. Through comparative analyses of gene co-expression networks and annual gene expression patterns, we show that annual expression rhythms of some important regulators of seasonal growth and development, including GIGANTEA and CONSTANS of the photoperiod pathway, have been disrupted in C. azalea. Furthermore, we reveal that the distinctive expression patterns of FLOWERING LOCUS T can be correlated with the seasonal activities of flowering and flushing. We demonstrate that the regulatory module involved in GIGANTEA, CONSTANS, and FLOWERING LOCUS T is central to achieve seasonality. CONCLUSIONS: Through the genomic and comparative genomics characterizations of ornamental Camellia spp., we propose that duplication of chromosomal segments as well as the establishment of gene expression patterns has played a key role in the formation of ornamental traits (e.g., flower shape, flowering time). This work provides a valuable genomic platform for understanding the molecular basis of ornamental traits.


Subject(s)
Camellia , Seasons , Camellia/genetics , Plant Breeding , Genomics , Flowers/genetics , Gene Expression , Gene Expression Regulation, Plant
18.
Neuroscience ; 543: 90-100, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38417540

ABSTRACT

Extracellular signal-regulated kinase (ERK) are serine/threonine-selective proteins and ERK1/2 can be phosphorylated in peripheral and central brain regions after cortical spreading depolarization (CSD) and calcitonin gene-related peptide; However, it remains unclear about whether and how ERK activity modulates CSD that correlates to migraine aura. Here, we determined the role of ERK in regulating CSD and explored the underlying mechanism involving transient receptor potential ankyrin 1 (TRPA1), a stress-sensing cation channel. CSD was recorded using intrinsic optical imaging in mouse brain slices, and electrophysiology in rats. Phosphorylated ERK (pERK1/2) and interleukin-1ß (IL-1ß) protein levels were detected using Western blot or enzyme-linked immunosorbent assay, respectively. IL-1ß mRNA level was detected using qPCR. The results showed that an ERK inhibitor, SCH77298, markedly prolonged CSD latency and reduced propagation rate in mouse brain slices. Corresponding to this, CSD induction increased levels of cytosolic pERK1/2 in ipsilateral cerebral cortices of rats, the elevation of which correlated to the level of IL-1ß mRNA. Mechanistic analysis showed that pre-treatment of an anti-TRPA1 antibody reduced the cytosolic pERK2 level but not pERK1 following CSD in cerebral cortices of rats and this level of pERK2 correlated with that of cerebral cortical IL-1ß protein. Furthermore, an ERK activator, AES16-2M, but not its scrambled control, reversed the prolonged CSD latency by a TRPA1 inhibitor, HC-030031, in mouse brain slices. These data revealed a crucial role of ERK activity in regulating CSD, and elevation of pERK and IL-1ß production induced by CSD is predominantly TRPA1 channel-dependent, thereby contributing to migraine pathogenesis.


Subject(s)
Cortical Spreading Depression , Migraine Disorders , Mice , Rats , Animals , Cortical Spreading Depression/physiology , Ankyrins/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Cerebral Cortex/metabolism , Migraine Disorders/metabolism , RNA, Messenger/metabolism
19.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338945

ABSTRACT

In trees, the annual cycling of active and dormant states in buds is closely regulated by environmental factors, which are of primary significance to their productivity and survival. It has been found that the parallel or convergent evolution of molecular pathways that respond to day length or temperature can lead to the establishment of conserved periodic gene expression patterns. In recent years, it has been shown in many woody plants that change in annual rhythmic patterns of gene expression may underpin the adaptive evolution in forest trees. In this review, we summarize the progress on the molecular mechanisms of seasonal regulation on the processes of shoot growth, bud dormancy, and bud break in response to day length and temperature factors. We focus on seasonal expression patterns of genes involved in dormancy and their associated epigenetic modifications; the seasonal changes in the extent of modifications, such as DNA methylation, histone acetylation, and histone methylation, at dormancy-associated loci have been revealed for their actions on gene regulation. In addition, we provide an outlook on the direction of research on the annual cycle of tree growth under climate change.


Subject(s)
Histones , Trees , Trees/physiology , Seasons , Histones/genetics , DNA Methylation , Gene Expression , Gene Expression Regulation, Plant
20.
J Am Chem Soc ; 146(5): 3483-3491, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38266486

ABSTRACT

Planar chiral ferrocenyl phosphines have been employed as highly valuable ligands in metal-catalyzed asymmetric reactions. However, their preparation remains a formidable challenge due to the requirement for intricate, multistep synthetic sequences. In addressing this issue, we have developed a groundbreaking enantioselective C-H activation strategy facilitated by P(III) directing groups, enabling the efficient construction of planar chiral ferrocenyl phosphines in a single step. Our innovative approach entails the combination of a palladium catalyst, a parent ferrocenyl phosphine, and a chiral phosphoramidite ligand, leading to exceptional reactivity and enantioselectivity. Remarkably, these novel ligands exhibit remarkable efficacy in silver-catalyzed asymmetric 1,3-dipolar cycloadditions. We carried out a combination of experimental and computational studies to obtain a more comprehensive understanding of the reaction pathway and the factors contributing to enantioselectivity.

SELECTION OF CITATIONS
SEARCH DETAIL
...