Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 393
Filter
1.
Front Med ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39115794

ABSTRACT

With the successive release of the CONSORT extensions for acupuncture, moxibustion, cupping, and Tuina/massage, this review aims to assess the reporting characteristics and quality of randomized controlled trials (RCTs) based on these specific guidelines. A comprehensive review was conducted by searching multiple databases, including Embase, Ovid MEDLINE(R), All EBM Reviews, AMED, CNKI, VIP Chinese Medical Journal Database, and Wanfang Data, for publications from January 1 to December 31, 2022. Two reviewers independently evaluated the eligibility of the records, extracted predetermined information, and assessed the reporting based on the STRICTA, STRICTOM, STRICTOC, and STRICTOTM checklists. Among the included 387 studies (acupuncture, 213; Tuina/massage, 85; moxibustion, 73; cupping, 16), the overall reporting compliance averaged 56.0%, with acupuncture leading at 62.6%, followed by cupping (60.2%), moxibustion (53.1%), and Tuina/massage (47.9%). About half of the evaluated items showed poor reporting (compliance rate < 65%). Notably, international journals demonstrated significantly higher reporting quality than Chinese journals (P < 0.05). Although acupuncture trials had relatively higher compliance rates, deficiencies persist in reporting non-pharmacological therapies of Chinese medicine, particularly in areas like treatment environment details and provider background information.

2.
Int J Legal Med ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39164574

ABSTRACT

The inference of body fluids and tissues is critical in reconstructing crime scenes and inferring criminal behaviors. Nevertheless, present methods are incompatible with conventional DNA genotyping, and additional testing might result in excessive consumption of forensic scene materials. This study aims to investigate the feasibility of distinguishing common body fluids/tissues through the difference in mitochondrial DNA copy number (mtDNAcn). Four types of body fluids/tissues were analyzed in this study - hair, saliva, semen, and skeletal muscle. MtDNAcn was estimated by dividing the read counts of mitochondrial DNA to that of nuclear DNA (RRmt/nu). Results indicated that there were significant differences in RRmt/nu between different body fluids/tissues. Specifically, hair samples exhibited the highest RRmt/nu (log10RRmt/nu: 4.3 ± 0.28), while semen samples showed the lowest RRmt/nu (log10RRmt/nu: -0.1 ± 0.28). RRmt/nu values for DNA samples without extraction were notably higher (approximately 2.9 times) than those obtained after extraction. However, no significant difference in RRmt/nu was observed between various age and gender groups. Hierarchical clustering and Kmeans clustering analyses showed that body fluids/tissues of the same type clustered closely to each other and could be inferred with high accuracy. In conclusion, this study demonstrated that the simultaneous detection of nuclear and mitochondrial DNA made it possible to perform conventional DNA analyses and body fluid/tissue inference at the same time, thus killing two birds with one stone. Furthermore, mtDNAcn has the potential to serve as a novel and promising biomarker for the identification of body fluids/tissues.

3.
Zhonghua Nan Ke Xue ; 30(2): 151-156, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-39177349

ABSTRACT

OBJECTIVE: To evaluate the efficiency of the four domestic language models, ERNIE Bot, ChatGLM2, Spark Desk and Qwen-14B-Chat, all with a massive user base and significant social attention, in response to consultations about PCa-related perioperative nursing and health education. METHODS: We designed a questionnaire that includes 15 questions commonly concerned by patients undergoing radical prostatectomy and 2 common nursing cases, and inputted the questions into each of the four language models for simulation consultation. Three nursing experts assessed the model responses based on a pre-designed Likert 5-point scale in terms of accuracy, comprehensiveness, understandability, humanistic care, and case analysis. We evaluated and compared the performance of the four models using visualization tools and statistical analyses. RESULTS: All the models generated high-quality texts with no misleading information and exhibited satisfactory performance. Qwen-14B-Chat scored the highest in all aspects and showed relatively stable outputs in multiple tests compared with ChatGLM2. Spark Desk performed well in terms of understandability but lacked comprehensiveness and humanistic care. Both Qwen-14B-Chat and ChatGLM2 demonstrated excellent performance in case analysis. The overall performance of ERNIE Bot was slightly inferior. All things considered, Qwen-14B-Chat was superior to the other three models in consultations about PCa-related perioperative nursing and health education. CONCLUSION: In PCa-related perioperative nursing, large language models represented by Qwen-14B-Chat are expected to become powerful auxiliary tools to provide patients with more medical expertise and information support, so as to improve the patient compliance and the quality of clinical treatment and nursing.


Subject(s)
Perioperative Nursing , Humans , Surveys and Questionnaires , Male , China , Health Education/methods , Language , Prostatectomy/methods
4.
J Agric Food Chem ; 72(34): 18971-18985, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39146036

ABSTRACT

Our previous study showed that heavy metal lead (Pb) exposure exacerbates high-fat-diet (HFD)-induced metabolic damage and significantly depletes the gut microbiota-derived metabolite short-chain fatty acid (SCFA) levels. However, it remains unclear whether SCFA is a key metabolite involved in accelerating adverse consequences after Pb exposure. In this study, we explored the effects of exogenous supplementation of acetate, propionate, and butyrate on a metabolic disorder model in Pb-exposed HFD mice. We found that three SCFA interventions attenuated glycolipid metabolism disorders and liver damage, with butyrate performing the best effects in improving obesity-related symptoms. All three SCFA promoted the abundance of Muribaculaceae and Muribaculum, acetate specifically enriched Christensenellaceae, Blautia, and Ruminococcus, and butyrate specifically enriched Parasutterella, Rikenella, Prevotellaceae_UCG-001, and Bacteroides, which contributed to the positive promotion of SCFA production forming a virtuous cycle. Besides, butyrate inhibited Gram-negative bacteria Escherichia-Shigella. All of these events alleviated the intestinal Th17/Treg imbalance and inflammatory response through crosstalk between the G protein-coupled receptor (GPR)/histone deacetylase 3 (HDAC3) and lipopolysaccharide (LPS)/toll-like receptors 4 (TLR4)/nuclear factor κ-B (NF-κB) pathways and ultimately improved the intestinal barrier function. SCFA further upregulated the monocarboxylate transporter 1 (MCT1) and GPR43/adenosine 5'-monophosphate-activated protein kinase (AMPK) pathways to inhibit hepatic lipid accumulation. Overall, SCFA, especially butyrate, is an effective modulator to improve metabolic disorders in obese individuals exposed to heavy metals by targeting gut microecology.


Subject(s)
Bacteria , Diet, High-Fat , Fatty Acids, Volatile , Gastrointestinal Microbiome , Homeostasis , Lead , Mice, Inbred C57BL , Obesity , Animals , Mice , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/drug effects , Obesity/metabolism , Obesity/drug therapy , Fatty Acids, Volatile/metabolism , Male , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Bacteria/drug effects , Homeostasis/drug effects , Humans , Lead/metabolism , Intestines/microbiology , Intestines/drug effects
5.
J Phys Chem Lett ; 15(29): 7419-7423, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38995995

ABSTRACT

Mixing iodide and bromide in three-dimensional metal-halide perovskites is a facile strategy for achieving red light-emitting diodes (LEDs). However, these devices often face challenges such as instability in electroluminescence spectra and low brightness due to phase segregation in mixed-halide perovskites. Here, we demonstrate spectrally stable and bright red perovskite LEDs by substituting some of the halide ions with pseudohalogen thiocyanate ions (SCN-). We find that SCN- can occupy halogen vacancies, thereby releasing microstrain and passivating defects in the perovskite crystals. This leads to the suppression of mixed-halide phase segregation under electrical bias. As a result, the red perovskite LEDs exhibit a high brightness of >35 000 cd m-2 with stable Commission Internationale de l'Eclairage (CIE) coordinates of (0.713, 0.282). This brightness surpasses that of the best-performing red perovskite LEDs, showing great promise for advancing perovskite LEDs in display and lighting applications.

6.
Hortic Res ; 11(7): uhae136, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38994448

ABSTRACT

Flavonoids constitute the main nutraceuticals in the leaves of tea plants (Camellia sinensis). To date, although it is known that drought stress can negatively impact the biosynthesis of flavonoids in tea leaves, the mechanism behind this phenomenon is unclear. Herein, we report a protein phosphorylation mechanism that negatively regulates the biosynthesis of flavonoids in tea leaves in drought conditions. Transcriptional analysis revealed the downregulation of gene expression of flavonoid biosynthesis and the upregulation of CsMPK4a encoding a mitogen-activated protein kinase in leaves. Luciferase complementation and yeast two-hybrid assays disclosed that CsMPK4a interacted with CsWD40. Phosphorylation assay in vitro, specific protein immunity, and analysis of protein mass spectrometry indicated that Ser-216, Thr-221, and Ser-253 of CsWD40 were potential phosphorylation sites of CsMPK4a. Besides, the protein immunity analysis uncovered an increased phosphorylation level of CsWD40 in tea leaves under drought conditions. Mutation of the three phosphorylation sites generated dephosphorylated CsWD403A and phosphorylated CsWD403D variants, which were introduced into the Arabidopsis ttg1 mutant. Metabolic analysis showed that the anthocyanin and proanthocyanidin content was lower in ttg1:CsWD403D transgenic plants than ttg1::CsWD403A transgenic and wild type plants. The transient overexpression of CsWD403D downregulated the anthocyanidin biosynthesis in tea leaves. The dual-fluorescein protein complementation experiment showed that CsWD403D did not interact with CsMYB5a and CsAN2, two key transcription factors of procyanidins and anthocyanidins biosynthesis in tea plant. These findings indicate that the phosphorylation of CsWD40 by CsMPK4a downregulates the flavonoid biosynthesis in tea plants in drought stresses.

7.
Int Immunopharmacol ; 139: 112698, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39029232

ABSTRACT

BACKGROUND: Kawasaki disease (KD) is the most common cause of acquired heart disease in childhood. Coronary artery lesions (CALs) are serious complications of KD that can result in stenosis and thrombosis, but the specific underlying pathogenic mechanisms have not been elucidated. Therefore, exploring biomarkers to help predict early CALs is urgently needed for clinical treatment. METHODS: Patients were recruited from three independent cohorts. In the discovery cohort, Data-Independent Acquisition Mass Spectrometry (DIA-MS) was performed to screen plasma proteins from healthy controls (HCs), KD patients prior to intravenous immunoglobulin (IVIG) treatment, and KD patients post-IVIG treatment. KD patients were further divided into KD patients without CALs (nCAL) and with CALs (CALs) groups. Bioinformatic analysis was carried out for the differentially expressed proteins (DEPs) and hub proteins. Candidate proteins were quantified by enzyme-linked immunosorbent assay (ELISA) in the validation cohort 1 and 2. Furthermore, candida albicans cell wall extract (CAWS)-induced KD vasculitis mice and cell models were established to investigate the expression of biomarkers identified in the aforementioned clinical cohort. RESULTS: According to the quantitative proteomics analysis, SERPINE1 was significantly increased in KD patients with CALs. Receiver operating characteristic curves (ROC) revealed that plasma SERPINE1 exhibited greater ability in predicting CALs (AUC = 0.824, P < 0.0001). After IVIG treatment, the concentrations of SERPINE1 in the nCALs group significantly decreased. However, the concentration of SERPINE1 remained persistently elevated in the CALs group. Moreover, the expression of SERPINE1 was significantly upregulated in the heart tissue of KD mice, KD plasma, or tumor necrosis factor-α (TNF-α)-stimulated human coronary artery endothelial cells (HCAECs). CONCLUSIONS: Overall, our results suggest that the plasma concentration of SERPINE1 might serve as a new potential predictive biomarker for CALs in KD patients.


Subject(s)
Biomarkers , Mucocutaneous Lymph Node Syndrome , Plasminogen Activator Inhibitor 1 , Proteomics , Humans , Mucocutaneous Lymph Node Syndrome/blood , Animals , Biomarkers/blood , Plasminogen Activator Inhibitor 1/blood , Plasminogen Activator Inhibitor 1/metabolism , Male , Female , Mice , Child, Preschool , Coronary Artery Disease/blood , Child , Immunoglobulins, Intravenous/therapeutic use , Infant , Disease Models, Animal , Mice, Inbred C57BL , Coronary Vessels/pathology
8.
Angew Chem Int Ed Engl ; : e202401355, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967087

ABSTRACT

Herein, we describe an innovative approach to the asymmetric electrochemical α-alkylation of aldehydes facilitated by a newly designed bifunctional chiral electrocatalyst. The highly efficient bifunctional chiral electrocatalyst combines a chiral aminocatalyst with a redox mediator. It plays a dual role as a redox mediator for electrooxidation, while simultaneously providing remarkable asymmetric induction for the stereoselective α-alkylation of aldehydes. Additionally, this novel catalyst exhibits enhanced catalytic activity and excellent stereoselective control comparable to conventional catalytic systems. As a result, this strategy provides a new avenue for versatile asymmetric electrochemistry. The electrooxidation of diverse phenols enables the C-H/C-H oxidative α-alkylation of aldehydes in a highly chemo- and stereoselective fashion. Detailed mechanistic studies by control experiments and cyclic voltammetry analysis demonstrate possible reaction pathways and the origin of enantio-induction.

9.
Arch Gerontol Geriatr ; 126: 105525, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38896974

ABSTRACT

OBJECTIVE: Genetic risks can accelerate ageing, yet better quality sleep may slow down it. We thus examined the interaction and combined effects of genetic predisposition and sleep quality on the risk of accelerate aging. METHODS: This study included 407,027 participants from the UK Biobank. Sleep index of each participant was retrieved from the following seven sleep behaviors: snoring, chronotype, daytime sleepiness, sleep duration, insomnia, nap and difficulties in getting up. The biological age (PhenoAge) were estimated by corresponding algorithms based on clinical traits, and their residual discrepancies with chronological age were defined as the age accelerations (PhenoAgeaccel). We explored the interaction and combined effects of genetic risk and sleep quality on accelerated ageing by constructing a linear model. RESULTS: Compared with participants in low sleep quality group, those in medium and high sleep quality group decreased 0.727 (95%CI, 0.653 to 0.801) and 1.056 (95%CI, 0.982 to 1.130) years of PhenoAgeaccel, respectively. Compared with participants in low genetic risk group, those in medium and high genetic risk group increased 0.833 (95%CI, 0.792 to 0.874) and 1.543 (95%CI, 1.494 to 1.592) years of PhenoAgeaccel, respectively. There was interaction between the genetic risk and sleep quality (P-interaction<0.001). For combined effect, compared to the group with high sleep quality and lower genetic risk, people with low sleep quality and high genetic risk had 2.747 (95%CI, 2.602 to 2.892) years higher PhenoAgeaccel. CONCLUSION: Our findings elucidate that better sleep quality could lessen accelerated biological ageing especially among population with high genetic risk.

11.
Proc Natl Acad Sci U S A ; 121(27): e2312337121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38923987

ABSTRACT

Sodium-ion batteries (SIBs) as one of the promising alternatives to lithium-ion batteries have achieved remarkable progress in the past. However, the all-climate performance is still very challenging for SIBs. Herein, 15-Crown-5 (15-C-5) is screened as an electrolyte additive from a number of ether molecules theoretically. The good sodiophilicity, high molecule rigidity, and bulky size enable it to reshape the solvation sheath and promote the anion engagement in the solvated structures by molecule crowding. This change also enhances Na-ion transfer, inhibits side reactions, and leads to a thin and robust solid-electrolyte interphase. Furthermore, the electrochemical stability and operating temperature windows of the electrolyte are extended. These profits improve the electrochemical performance of SIBs in all climates, much better than the case without 15-C-5. This improvement is also adopted to µ-Sn, µ-Bi, hard carbon, and MoS2. This work opens a door to prioritize the potential molecules in theory for advanced electrolytes.

12.
Int J Biol Macromol ; 272(Pt 1): 132776, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38823750

ABSTRACT

Uranium as a nuclear fuel, its source and aftertreatment has been a hot topic of debate for developers. In this paper, amidoxime and guanidino-modified cotton fibers (DC-AO-PHMG) were synthesized by the two-step functionalization approach, which exhibited remarkable antimicrobial and high uranium recovery property. Adsorption tests revealed that DC-AO-PHMG had excellent selectivity and anti-interference properties, the maximum adsorption capacity of 609.75 mg/g. More than 85 % adsorption capacity could still be kept after 10 adsorption-desorption cycles, and it conformed to the pseudo-second-order kinetic model and the Langmuir adsorption isotherm model as a spontaneous heat-absorbing chemical monolayer process. FT-IR, EDS and XPS analyses speculated that the amidoxime and amino synergistically increased the uranium uptake. The inhibitory activities of DC-AO-PHMG against three aquatic bacteria, BEY, BEL (from Yellow River water and lake bottom silt, respectively) and B. subtilis were significantly stronger, and the uranium adsorption was not impacted by the high bacteria content. Most importantly, DC-AO-PHMG removed up to 94 % of uranium in simulated seawater and extracted up to 4.65 mg/g of uranium from Salt Lake water, which demonstrated its great potential in the field of uranium resource recovery.


Subject(s)
Cotton Fiber , Oximes , Uranium , Uranium/chemistry , Adsorption , Oximes/chemistry , Sewage/chemistry , Sewage/microbiology , Kinetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Water Purification/methods
13.
Sci Rep ; 14(1): 12926, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839842

ABSTRACT

Cuproptosis is a newly defined form of programmed cell death that relies on mitochondria respiration. Long noncoding RNAs (lncRNAs) play crucial roles in tumorigenesis and metastasis. However, whether cuproptosis-related lncRNAs are involved in the pathogenesis of diffuse large B cell lymphoma (DLBCL) remains unclear. This study aimed to identify the prognostic signatures of cuproptosis-related lncRNAs in DLBCL and investigate their potential molecular functions. RNA-Seq data and clinical information for DLBCL were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Cuproptosis-related lncRNAs were screened out through Pearson correlation analysis. Utilizing univariate Cox, least absolute shrinkage and selection operator (Lasso) and multivariate Cox regression analysis, we identified seven cuproptosis-related lncRNAs and developed a risk prediction model to evaluate its prognostic value across multiple groups. GO and KEGG functional analyses, single-sample GSEA (ssGSEA), and the ESTIMATE algorithm were used to analyze the mechanisms and immune status between the different risk groups. Additionally, drug sensitivity analysis identified drugs with potential efficacy in DLBCL. Finally, the protein-protein interaction (PPI) network were constructed based on the weighted gene co-expression network analysis (WGCNA). We identified a set of seven cuproptosis-related lncRNAs including LINC00294, RNF139-AS1, LINC00654, WWC2-AS2, LINC00661, LINC01165 and LINC01398, based on which we constructed a risk model for DLBCL. The high-risk group was associated with shorter survival time than the low-risk group, and the signature-based risk score demonstrated superior prognostic ability for DLBCL patients compared to traditional clinical features. By analyzing the immune landscapes between two groups, we found that immunosuppressive cell types were significantly increased in high-risk DLBCL group. Moreover, functional enrichment analysis highlighted the association of differentially expressed genes with metabolic, inflammatory and immune-related pathways in DLBCL patients. We also found that the high-risk group showed more sensitivity to vinorelbine and pyrimethamine. A cuproptosis-related lncRNA signature was established to predict the prognosis and provide insights into potential therapeutic strategies for DLBCL patients.


Subject(s)
Gene Expression Regulation, Neoplastic , Lymphoma, Large B-Cell, Diffuse , RNA, Long Noncoding , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/drug therapy , Humans , RNA, Long Noncoding/genetics , Prognosis , Biomarkers, Tumor/genetics , Protein Interaction Maps/genetics , Male , Female , Gene Expression Profiling , Gene Regulatory Networks , Middle Aged
14.
Endocrine ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849645

ABSTRACT

PURPOSE: No study has comprehensively assessed the relationship of metabolic factors including insulin resistance, hypertension, hyperuricemia, and hypercholesterolemia with the development of carotid plaque. Therefore, we constructed metabolic scores based on the above metabolic factors and examined its association with carotid plaque in young and older Chinese adults. METHODS: This study included 17,396 participants who underwent carotid ultrasound examinations, including 14,173 young adults (<65 years) and 3,223 older adults (≥65 years). Individual metabolic score was calculated using triglyceride-glucose (TyG) index, mean arterial pressure (MAP), uric acid, and total cholesterol (TC). Logistic regression models were conducted to examine the role of metabolic score and its components in the prevalence of carotid plaque. The nonlinear relationship was examined using restricted cubic spline regression. Meanwhile, subgroup, interaction, and sensitivity analyses were conducted. RESULTS: The multivariate logistic regression analysis showed that TyG (OR: 1.088; 95%CI: 1.046-1.132), MAP (OR: 1.121; 95%CI: 1.077-1.168), TC (OR: 1.137; 95%CI: 1.094-1.182) and metabolic score (OR: 1.064; 95%CI: 1.046-1.082) were associated with carotid plaque prevalence in young adults rather than older adults. The nonlinear association was not observed for metabolic scores and carotid plaque. Subgroup analyses showed significant associations between metabolic scores and carotid plaque prevalence in men, women, normal-weight, and overweight young adults. No interaction of metabolic score with sex and BMI were observed. CONCLUSIONS: The results support that control of TyG, MAP, TC, and metabolic scores is a key point in preventing the prevalence of carotid plaque in the young adults.

15.
Adv Sci (Weinh) ; 11(28): e2401730, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38696659

ABSTRACT

Sodium ion batteries (SIBs) are considered as the ideal candidates for the next generation of electrochemical energy storage devices. The major challenges of anode lie in poor cycling stability and the sluggish kinetics attributed to the inherent large Na+ size. In this work, Bi nanosphere encapsulated in N-doped carbon nanowires (Bi@N-C) is assembled by facile electrospinning and carbonization. N-doped carbon mitigates the structure stress/strain during alloying/dealloying, optimizes the ionic/electronic diffusion, and provides fast electron transfer and structural stability. Due to the excellent structure, Bi@N-C shows excellent Na storage performance in SIBs in terms of good cycling stability and rate capacity in half cells and full cells. The fundamental mechanism of the outstanding electrochemical performance of Bi@N-C has been demonstrated through synchrotron in-situ XRD, atomic force microscopy, ex-situ scanning electron microscopy (SEM) and density functional theory (DFT) calculation. Importantly, a deeper understanding of the underlying reasons of the performance improvement is elucidated, which is vital for providing the theoretical basis for application of SIBs.

16.
Adv Mater ; 36(31): e2400658, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38782446

ABSTRACT

Ion migration is a major factor affecting the long term stability of perovskite light-emitting diodes (LEDs), which limits their commercialization potential. The accumulation of excess halide ions at the grain boundaries of perovskite films is a primary cause of ion migration in these devices. Here, it is demonstrated that the channels of ion migrations can be effectively impeded by elevating the hole transport layer between the perovskite grain boundaries, resulting in highly stable perovskite LEDs. The unique structure is achieved by reducing the wettability of the perovskites, which prevents infiltration of the upper hole-transporting layer into the spaces of perovskite grain boundaries. Consequently, nanosized gaps are formed between the excess halide ions and the hole transport layer, effectively suppressing ion migration. With this structure, perovskite LEDs with operational half-lifetimes of 256 and 1774 h under current densities of 100 and 20 mA cm-2 respectively are achieved. These lifetimes surpass those of organic LEDs at high brightness. It is further found that this approach can be extended to various perovskite LEDs, showing great promise for promoting perovskite LEDs toward commercial applications.

17.
Nature ; 630(8017): 631-635, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811739

ABSTRACT

The increasing demands for more efficient and brighter thin-film light-emitting diodes (LEDs) in flat-panel display and solid-state lighting applications have promoted research into three-dimensional (3D) perovskites. These materials exhibit high charge mobilities and low quantum efficiency droop1-6, making them promising candidates for achieving efficient LEDs with enhanced brightness. To improve the efficiency of LEDs, it is crucial to minimize nonradiative recombination while promoting radiative recombination. Various passivation strategies have been used to reduce defect densities in 3D perovskite films, approaching levels close to those of single crystals3. However, the slow radiative (bimolecular) recombination has limited the photoluminescence quantum efficiencies (PLQEs) of 3D perovskites to less than 80% (refs. 1,3), resulting in external quantum efficiencies (EQEs) of LED devices of less than 25%. Here we present a dual-additive crystallization method that enables the formation of highly efficient 3D perovskites, achieving an exceptional PLQE of 96%. This approach promotes the formation of tetragonal FAPbI3 perovskite, known for its high exciton binding energy, which effectively accelerates the radiative recombination. As a result, we achieve perovskite LEDs with a record peak EQE of 32.0%, with the efficiency remaining greater than 30.0% even at a high current density of 100 mA cm-2. These findings provide valuable insights for advancing the development of high-efficiency and high-brightness perovskite LEDs.

18.
Immunol Invest ; 53(6): 872-890, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38809063

ABSTRACT

BACKGROUND: Cerebral ischemia/reperfusion injury (CIRI) is still a complicated disease with high fatality rates worldwide. Transmembrane Protein 79 (TMEM79) regulates inflammation and oxidative stress in some other diseases. METHODS: CIRI mouse model was established using C57BL/6J mice through middle cerebral artery occlusion-reperfusion (MCAO/R), and BV2 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R) to simulate CIRI. Brain tissue or BV2 cells were transfected or injected with lentivirus-carried TMEM79 overexpression vector. The impact of TMEM79 on CIRI-triggered oxidative stress was ascertained by dihydroethidium (DHE) staining and examination of oxidative stress indicators. Regulation of TMEM79 in neuronal apoptosis and inflammation was determined using TUNEL staining and ELISA. RESULTS: TMEM79 overexpression mitigated neurological deficit induced by MCAO/R and decreased the extent of cerebral infarct. TMEM79 prevented neuronal death in brain tissue of MCAO/R mouse model and suppressed inflammatory response by reducing inflammatory cytokines levels. Moreover, TMEM79 significantly attenuated inflammation and oxidative stress caused by OGD/R in BV2 cells. TMEM79 facilitated the activation of Nrf2 and inhibited NLRP3 and caspase-1 expressions. Rescue experiments indicated that the Nrf2/NLRP3 signaling pathway mediated the mitigative effect of TMEM79 on CIRI in vivo and in vitro. CONCLUSION: Overall, TMEM79 was confirmed to attenuate CIRI via regulating the Nrf2/NLRP3 signaling pathway.


Subject(s)
Disease Models, Animal , Infarction, Middle Cerebral Artery , Membrane Proteins , NF-E2-Related Factor 2 , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Reperfusion Injury , Animals , Humans , Male , Mice , Apoptosis , Brain Ischemia/metabolism , Cell Line , Infarction, Middle Cerebral Artery/metabolism , Infarction, Middle Cerebral Artery/pathology , Inflammation/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Inbred C57BL , Neurons/metabolism , Neurons/pathology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Reperfusion Injury/metabolism , Signal Transduction
19.
Nutrients ; 16(10)2024 May 10.
Article in English | MEDLINE | ID: mdl-38794683

ABSTRACT

BACKGROUND: High dietary diversity has been found to be associated with frailty. However, the trajectory of dietary diversity intake in relation to frailty is unclear. METHODS: Using the latent class trajectory modeling approach, we identified distinctive dietary variety trajectory groups among 2017 participants based on the Chinese Longitudinal Healthy Longevity Survey acquired at four time points within a 10-year period. Frailty status was assessed using a frailty index comprising 37 health deficits. Dietary diversity was quantified using the dietary variety score (DVS), based on food category consumption frequency. Logistic regression analyses were employed to explore the association between DVS change trajectories and frailty. RESULTS: This study identified two distinct DVS trajectories: "Moderate-Slow decline-Slow growth", encompassing 810 (40.16%) individuals, and "Moderate-Slow growth-Accelerated decline", including 1207 (59.84%) individuals. After adjusting for covariates, the odds ratio for DVS in the "Moderate-Slow decline-Slow growth" group was 1.326 (95% confidence interval: 1.075-1.636) compared to the "Moderate-Slow growth-Accelerated decline" group. The "Moderate-Slow decline-Slow growth" trajectory continued to decrease and was maintained at a low level in the early stages of aging. CONCLUSION: Sustaining a high dietary diversity trajectory over time, particularly in the early stages of aging, could potentially decrease the risk of frailty among older Chinese adults.


Subject(s)
Diet , Frail Elderly , Frailty , Latent Class Analysis , Humans , Aged , Female , Male , China/epidemiology , Diet/statistics & numerical data , Longitudinal Studies , Frail Elderly/statistics & numerical data , Aged, 80 and over , Cohort Studies , Asian People , Geriatric Assessment/methods , East Asian People
20.
Acta Pharm Sin B ; 14(5): 2026-2038, 2024 May.
Article in English | MEDLINE | ID: mdl-38799643

ABSTRACT

Growing evidences indicate that dysfunction of autophagy contributes to the disease pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two neurodegenerative disorders. The GGGGCC·GGCCCC repeat RNA expansion in chromosome 9 open reading frame 72 (C9orf72) is the most genetic cause of both ALS and FTD. According to the previous studies, GGGGCC·GGCCCC repeat undergoes the unconventional repeat-associated non-ATG translation, which produces dipeptide repeat (DPR) proteins. Although there is a growing understanding that C9orf72 DPRs have a strong ability to harm neurons and induce C9orf72-linked ALS/FTD, whether these DPRs can affect autophagy remains unclear. In the present study, we find that poly-GR and poly-PR, two arginine-containing DPRs which display the most cytotoxic properties according to the previous studies, strongly inhibit starvation-induced autophagy. Moreover, our data indicate that arginine-rich DPRs enhance the interaction between BCL2 and BECN1/Beclin 1 by inhibiting BCL2 phosphorylation, therefore they can impair autophagic clearance of neurodegenerative disease-associated protein aggregates under starvation condition in cells. Importantly, our study not only highlights the role of C9orf72 DPR in autophagy dysfunction, but also provides novel insight that pharmacological intervention of autophagy using SW063058, a small molecule compound that can disrupt the interaction between BECN1 and BCL2, may reduce C9orf72 DPR-induced neurotoxicity.

SELECTION OF CITATIONS
SEARCH DETAIL