Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Language
Publication year range
1.
Microorganisms ; 12(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38674634

ABSTRACT

Peptidoglycan hydrolases are enzymes responsible for breaking the peptidoglycan present in the bacterial cell wall, facilitating cell growth, cell division and peptidoglycan turnover. Xanthomonas citri subsp. citri (X. citri), the causal agent of citrus canker, encodes an Escherichia coli M23 peptidase EnvC homolog. EnvC is a LytM factor essential for cleaving the septal peptidoglycan, thereby facilitating the separation of daughter cells. In this study, the investigation focused on EnvC contribution to the virulence and cell separation of X. citri. It was observed that disruption of the X. citri envC gene (ΔenvC) led to a reduction in virulence. Upon inoculation into leaves of Rangpur lime (Citrus limonia Osbeck), the X. citri ΔenvC exhibited a delayed onset of citrus canker symptoms compared with the wild-type X. citri. Mutant complementation restored the wild-type phenotype. Sub-cellular localization confirmed that X. citri EnvC is a periplasmic protein. Moreover, the X. citri ΔenvC mutant exhibited elongated cells, indicating a defect in cell division. These findings support the role of EnvC in the regulation of cell wall organization, cell division, and they clarify the role of this peptidase in X. citri virulence.

2.
Phytopathology ; 113(7): 1266-1277, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36825333

ABSTRACT

Transcription activator-like effectors are key virulence factors of Xanthomonas. They are secreted into host plant cells and mimic transcription factors inducing the expression of host susceptibility (S) genes. In citrus, CsLOB1 is a direct target of PthA4, the primary effector associated with citrus canker symptoms. CsLOB1 is a transcription factor, and its expression is required for canker symptoms induced by Xanthomonas citri subsp. citri. Several genes are up-regulated by PthA4; however, only CsLOB1 was described as an S gene induced by PthA4. Here, we investigated whether other up-regulated genes could be direct targets of PthA4 or CsLOB1. Seven up-regulated genes by PthA4 were investigated; however, an expansin-coding gene was more induced than CsLOB1. In Nicotiana benthamiana transient expression experiments, we demonstrate that the expansin-coding gene, referred here to as CsLOB1-INDUCED EXPANSIN 1 (CsLIEXP1), is not a direct target of PthA4, but CsLOB1. Interestingly, CsLIEXP1 was induced by CsLOB1 even without the predicted CsLOB1 binding site, which suggested that CsLOB1 has other unknown binding sites. We also investigated the minimum promoter regulated by CsLOB1, and this region and LOB1 domain were conserved among citrus species and relatives, which suggests that the interaction PthA4-CsLOB1-CsLIEXP1 is conserved in citrus species and relatives. This is the first study that experimentally demonstrated a CsLOB1 downstream target and lays the foundation to identify other new targets. In addition, we demonstrated that the CsLIEXP1 is a putative S gene indirectly induced by PthA4, which may serve as the target for genome editing to generate citrus canker-resistant varieties.


Subject(s)
Citrus , Xanthomonas , Citrus/genetics , Plant Diseases/genetics , Promoter Regions, Genetic/genetics , Gene Editing , Xanthomonas/genetics
3.
Electron. j. biotechnol ; Electron. j. biotechnol;50: 37-44, Mar. 2021. graf, tab
Article in English | LILACS | ID: biblio-1292321

ABSTRACT

BACKGROUND: Short Tandem repeats (STRs) existed as popular elements in both eukaryotic and prokaryotic genomes. RESULTS: In this study, we analyzed the characteristics, distributions, and motif features of STRs within whole-genomes of 140 plant species. The results showed that STR density was negatively correlated with the genome size. Hexanucleotide repeat was the most abundant type of STRs. The distribution of algae shows a preference different from that of other plants. By analyzing GC contents of STRs and genome, it was concluded that STR motif was influenced by GC contents. Analysis of the long STRs in genome (length 1000 bp) found that dicots have the more long STRs. For STR types, di- and tri-nucleotide accounted for the highest proportion. Analyzing and designing long STRs in CDS (length 500 bp) was to verify the role of long STRs in Gossypium hirsutum TM-1 and Solanum tuberosum. By comparing the long STRs found in Fragaria x ananassa with other species, some evolutionary characteristics of the long STRs were obtained. CONCLUSIONS: We got the characteristics, distribution, and motif features of STRs in the whole genome of 140 plants and obtained some evolutionary characteristics of long STRs. The study provides useful insights into STR preference, characteristics, and distribution in plants.


Subject(s)
Plants/genetics , Genetic Variation , Microsatellite Repeats , Base Sequence , Sequence Analysis
4.
PLoS One ; 15(7): e0236185, 2020.
Article in English | MEDLINE | ID: mdl-32730344

ABSTRACT

Fluorescent markers are a powerful tool and have been widely applied in biology for different purposes. The genome sequence of Xanthomonas citri subsp. citri (X. citri) revealed that approximately 30% of the genes encoded hypothetical proteins, some of which could play an important role in the success of plant-pathogen interaction and disease triggering. Therefore, revealing their functions is an important strategy to understand the bacterium pathways and mechanisms involved in plant-host interaction. The elucidation of protein function is not a trivial task, but the identification of the subcellular localization of a protein is key to understanding its function. We have constructed an integrative vector, pMAJIIc, under the control of the arabinose promoter, which allows the inducible expression of red fluorescent protein (mCherry) fusions in X. citri, suitable for subcellular localization of target proteins. Fluorescence microscopy was used to track the localization of VrpA protein, which was visualized surrounding the bacterial outer membrane, and the GyrB protein, which showed a diffused cytoplasmic localization, sometimes with dots accumulated near the cellular poles. The integration of the vector into the amy locus of X. citri did not affect bacterial virulence. The vector could be stably maintained in X. citri, and the disruption of the α-amylase gene provided an ease screening method for the selection of the transformant colonies. The results demonstrate that the mCherry-containing vector here described is a powerful tool for bacterial protein localization in cytoplasmic and periplasmic environments.


Subject(s)
Bacterial Proteins/metabolism , Cytoplasm/metabolism , Periplasm/metabolism , Recombinant Fusion Proteins/metabolism , Xanthomonas/metabolism , Arabinose/pharmacology , Chromosomes, Bacterial/genetics , Genetic Vectors/metabolism , Microbial Viability/drug effects , Protein Transport/drug effects , Starch/metabolism , Subcellular Fractions/drug effects , Xanthomonas/pathogenicity
5.
BMC Genomics ; 20(1): 700, 2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31500575

ABSTRACT

BACKGROUND: Xanthomonas citri subsp. citri pathotypes cause bacterial citrus canker, being responsible for severe agricultural losses worldwide. The A pathotype has a broad host spectrum, while A* and Aw are more restricted both in hosts and in geography. Two previous phylogenomic studies led to contrasting well-supported clades for sequenced genomes of these pathotypes. No extensive biogeographical or divergence dating analytic approaches have been so far applied to available genomes. RESULTS: Based on a larger sampling of genomes than in previous studies (including six new genomes sequenced by our group, adding to a total of 95 genomes), phylogenomic analyses resulted in different resolutions, though overall indicating that A + AW is the most likely true clade. Our results suggest the high degree of recombination at some branches and the fast diversification of lineages are probable causes for this phylogenetic blurring effect. One of the genomes analyzed, X. campestris pv. durantae, was shown to be an A* strain; this strain has been reported to infect a plant of the family Verbenaceae, though there are no reports of any X. citri subsp. citri pathotypes infecting any plant outside the Citrus genus. Host reconstruction indicated the pathotype ancestor likely had plant hosts in the family Fabaceae, implying an ancient jump to the current Rutaceae hosts. Extensive dating analyses indicated that the origin of X. citri subsp. citri occurred more recently than the main phylogenetic splits of Citrus plants, suggesting dispersion rather than host-directed vicariance as the main driver of geographic expansion. An analysis of 120 pathogenic-related genes revealed pathotype-associated patterns of presence/absence. CONCLUSIONS: Our results provide novel insights into the evolutionary history of X. citri subsp. citri as well as a sound phylogenetic foundation for future evolutionary and genomic studies of its pathotypes.


Subject(s)
Evolution, Molecular , Genetic Variation , Genomics , Phylogeography , Xanthomonas/genetics , Xanthomonas/physiology
6.
BMC genomics, v. 20, 700, sep. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2830

ABSTRACT

Background: Xanthomonas citri subsp. citri pathotypes cause bacterial citrus canker, being responsible for severe agricultural losses worldwide. The A pathotype has a broad host spectrum, while A* and Aw are more restricted both in hosts and in geography. Two previous phylogenomic studies led to contrasting well-supported clades for sequenced genomes of these pathotypes. No extensive biogeographical or divergence dating analytic approaches have been so far applied to available genomes. Results: Based on a larger sampling of genomes than in previous studies (including six new genomes sequenced by our group, adding to a total of 95 genomes), phylogenomic analyses resulted in different resolutions, though overall indicating that A + AW is the most likely true clade. Our results suggest the high degree of recombination atsome branches and the fast diversification of lineages are probable causes for this phylogenetic blurring effect. One of the genomes analyzed, X. campestris pv. durantae, was shown to be an A* strain; this strain has been reported to infect a plant of the family Verbenaceae, though there are no reports of any X. citri subsp. citri pathotypes infecting any plant outside the Citrus genus. Host reconstruction indicated the pathotype ancestor likely had plant hosts in the family Fabaceae, implying an ancient jump to the current Rutaceae hosts. Extensive dating analyses indicated that the origin of X. citri subsp. citri occurred more recently than the main phylogenetic splits of Citrus plants, suggesting dispersion rather than host-directed vicariance as the main driver of geographic expansion. An analysis of 120 pathogenic-related genes revealed pathotype-associated patterns of presence/absence. Conclusions: Our results provide novel insights into the evolutionary history of X. citri subsp. citri as well as a sound phylogenetic foundation for future evolutionary and genomic studies of its pathotypes

7.
BMC Genomics ; 19(1): 16, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29301493

ABSTRACT

BACKGROUND: Xanthomonas citri, a causal agent of citrus canker, has been a well-studied model system due to recent availability of whole genome sequences of multiple strains from different geographical regions. Major limitations in our understanding of the evolution of pathogenicity factors in X. citri strains sequenced by short-read sequencing methods have been tracking plasmid reshuffling among strains due to inability to accurately assign reads to plasmids, and analyzing repeat regions among strains. X. citri harbors major pathogenicity determinants, including variable DNA-binding repeat region containing Transcription Activator-like Effectors (TALEs) on plasmids. The long-read sequencing method, PacBio, has allowed the ability to obtain complete and accurate sequences of TALEs in xanthomonads. We recently sequenced Xanthomonas citri str. Xc-03-1638-1-1, a copper tolerant A group strain isolated from grapefruit in 2003 from Argentina using PacBio RS II chemistry. We analyzed plasmid profiles, copy number and location of TALEs in complete genome sequences of X. citri strains. RESULTS: We utilized the power of long reads obtained by PacBio sequencing to enable assembly of a complete genome sequence of strain Xc-03-1638-1-1, including sequences of two plasmids, 249 kb (plasmid harboring copper resistance genes) and 99 kb (pathogenicity plasmid containing TALEs). The pathogenicity plasmid in this strain is a hybrid plasmid containing four TALEs. Due to the intriguing nature of this pathogenicity plasmid with Tn3-like transposon association, repetitive elements and multiple putative sites for origins of replication, we might expect alternative structures of this plasmid in nature, illustrating the strong adaptive potential of X. citri strains. Analysis of the pathogenicity plasmid among completely sequenced X. citri strains, coupled with Southern hybridization of the pathogenicity plasmids, revealed clues to rearrangements of plasmids and resulting reshuffling of TALEs among strains. CONCLUSIONS: We demonstrate in this study the importance of long-read sequencing for obtaining intact sequences of TALEs and plasmids, as well as for identifying rearrangement events including plasmid reshuffling. Rearrangement events, such as the hybrid plasmid in this case, could be a frequent phenomenon in the evolution of X. citri strains, although so far it is undetected due to the inability to obtain complete plasmid sequences with short-read sequencing methods.


Subject(s)
Plasmids/genetics , Recombination, Genetic , Transcription Activator-Like Effectors/genetics , Xanthomonas/genetics , Chromosomes, Bacterial , Copper/pharmacology , DNA Transposable Elements , Genome, Bacterial , Sequence Analysis, DNA , Xanthomonas/drug effects
8.
BMC Microbiol ; 16: 55, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-27005008

ABSTRACT

BACKGROUND: RNA helicases are enzymes that catalyze the separation of double-stranded RNA (dsRNA) using the free energy of ATP binding and hydrolysis. DEAD/DEAH families participate in many different aspects of RNA metabolism, including RNA synthesis, RNA folding, RNA-RNA interactions, RNA localization and RNA degradation. Several important bacterial DEAD/DEAH-box RNA helicases have been extensively studied. In this study, we characterize the ATP-dependent RNA helicase encoded by the hrpB (XAC0293) gene using deletion and genetic complementation assays. We provide insights into the function of the hrpB gene in Xanthomonas citri subsp. citri by investigating the roles of hrpB in biofilm formation on abiotic surfaces and host leaves, cell motility, host virulence of the citrus canker bacterium and growth in planta. RESULTS: The hrpB gene is highly conserved in the sequenced strains of Xanthomonas. Mutation of the hrpB gene (∆hrpB) resulted in a significant reduction in biofilms on abiotic surfaces and host leaves. ∆hrpB also exhibited increased cell dispersion on solid medium plates. ∆hrpB showed reduced adhesion on biotic and abiotic surfaces and delayed development in disease symptoms when sprayed on susceptible citrus leaves. Quantitative reverse transcription-PCR assays indicated that deletion of hrpB reduced the expression of four type IV pili genes. The transcriptional start site of fimA (XAC3241) was determined using rapid amplification of 5'-cDNA Ends (5'RACE). Based on the results of fimA mRNA structure predictions, the fimA 5' UTR may contain three different loops. HrpB may be involved in alterations to the structure of fimA mRNA that promote the stability of fimA RNA. CONCLUSIONS: Our data show that hrpB is involved in adherence of Xanthomonas citri subsp. citri to different surfaces. In addition, to the best of our knowledge, this is the first time that a DEAH RNA helicase has been implicated in the regulation of type IV pili in Xanthomonas.


Subject(s)
Biofilms/growth & development , RNA Helicases/genetics , RNA Helicases/metabolism , Xanthomonas/physiology , Xanthomonas/pathogenicity , 5' Untranslated Regions , Bacterial Adhesion , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Citrus/microbiology , Fimbriae, Bacterial/genetics , Gene Deletion , Gene Expression Regulation, Bacterial , Plant Diseases/microbiology , Plant Leaves/microbiology , Virulence , Xanthomonas/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL