Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cosmet Sci ; 45(5): 581-591, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36853015

ABSTRACT

OBJECTIVE: Retinol (Vitamin A) is one of the most effective molecules for the treatment of skin aging. However, it degrades rapidly under the influence of light, oxygen, metal ions, and oxidizing agents. To prevent this, stabilizing systems are used commonly. Notably, butylated hydroxytoluene (2,6-di-tert-butyl-p-cresol) (BHT) and ethylenediaminetetraacetic acid (EDTA) salts exhibit excellent antioxidant and metal-chelating properties but are not eco-friendly. In this study, our goal was to develop a new eco-friendly stabilization system for retinol-based formulations such that the system does not interfere with retinol skin absorption, nor its clinical efficacy. METHODS: An evaluation tool called the Sustainable Product Optimization Tool (SPOT) was used to assess the environmental performance of formulations containing retinol and the various stabilizers investigated. Accelerated stability tests were performed on formulations stored for 2 months at 4 and 45°C (ISO/TR Standard 18811 2018 directives). Long-term stability evaluation was done on formulations stored for 24-months at room temperature. Retinol skin absorption was assessed by the Franz cell method using human skin explants (OECD guideline 428). Finally, a clinical study was performed to evaluate the cosmetic performance of a 0.3% stabilized retinol formulation. RESULTS: N,N'-ethylenediamine disuccinic acid ([S,S]-EDDS isomer) and pentaerythritol tetrakis(3,5-di-tert-butyl-4-hydroxyhydrocinnamate) (PBHC) showed higher biodegradability and a reduced water footprint compared with those of BHT and EDTA. The SPOT simulation gave [S,S]-EDDS + PBHC a score of 10 versus 8.84 for EDTA + BHT. Moreover, [S,S]-EDDS + PBHC better controlled the chemical degradation of retinol compared with EDTA + BHT. Retinol skin absorption was also achieved in the case of a formulation containing [S,S]-EDDS + PBHC, and several skin attributes improved significantly after 12 weeks of product use, with over 75% of the panel perceiving benefits. CONCLUSION: Regarding retinol stabilization, the PBHC + [S,S]-EDDS combination is an eco-friendlier and more effective alternative to BHT + EDTA.


OBJECTIF: Le rétinol est l'une des molécules les plus efficaces sur les signes du vieillissement. Cependant, il se dégrade rapidement, notamment sous l'influence de la lumière, de l'oxygène, des ions métalliques et des oxydants. Il existe des systèmes de stabilisation notamment à base d'hydroxytoluène butylé (2,6-di-tert-butyl-p-crésol) (BHT) et de sels d'acide éthylènediamine tétra acétique (EDTA) qui possèdent respectivement d'excellentes propriétés antioxydantes et chélatrices des métaux bien que certaines études aient montré que les deux présentaient un profil environnemental moins que parfait. Notre objectif était de développer un nouveau système de stabilisation ayant un meilleur respect environnemental. Ce nouveau système plus durable ne doit pas impacter l'absorption cutanée du rétinol, ni son efficacité clinique. MÉTHODES: Un outil d'évaluation appelé SPOT (Sustainable Product Optimization Tool) a été utilisé pour évaluer la performance environnementale des formules contenant du rétinol et des stabilisants. Des tests de stabilité accélérés ont été réalisés 2 mois après la formulation avec des produits gardés à 4°C et 45°C (norme ISO/TR 18811 directives 2018). Les stabilités de longue durée ont été évalués sur des produits gardés 24 mois à la température ambiante. L'absorption cutanée du rétinol a été réalisée par la méthode des cellules de Franz avec des explants de peau humaine (directive OCDE 428). Enfin, une étude clinique a prouvé la performance cosmétique d'une formule de rétinol stabilisé à 0,3%. RÉSULTATS: L'association de l'acide N,N'-éthylènediamine disuccinique (isomère [S,S]-EDDS) et du pentaérythritol tétrakis (3,5-di-tert-butyl-4-hydroxyhydrocinnamate) (PBHC) présente une biodégradabilité plus élevée et une empreinte eau réduite par rapport à BHT et EDTA. La simulation SPOT a donné au [S,S]-EDDS et au PBHC un score de 10 contre 8,84 pour l'EDTA et le BHT. De plus, le [S,S]-EDDS et le PBHC contrôlent mieux la dégradation chimique du rétinol par rapport à l'association BHT plus EDTA. L'absorption cutanée du rétinol a également été obtenue dans une formule contenant du [S,S]-EDDS et du PBHC et plusieurs attributs cutanés ont été significativement améliorés après 12 semaines d'utilisation du produit. Les bénéfices ont été perçus par plus de 75% du panel testé CONCLUSION: Concernant la stabilisation du rétinol, l'association PBHC et [S,S]-EDDS est une alternative plus écologique et plus performante que le BHT et l'EDTA.


Subject(s)
Vitamin A , Humans , Antioxidants , Chelating Agents , Edetic Acid/chemistry
2.
Nat Med ; 17(11): 1456-65, 2011 Oct 23.
Article in English | MEDLINE | ID: mdl-22019886

ABSTRACT

Anemia because of insufficient production of and/or response to erythropoietin (Epo) is a major complication of chronic kidney disease and cancer. The mechanisms modulating the sensitivity of erythroblasts to Epo remain poorly understood. We show that, when cultured with Epo at suboptimal concentrations, the growth and clonogenic potential of erythroblasts was rescued by transferrin receptor 1 (TfR1)-bound polymeric IgA1 (pIgA1). Under homeostatic conditions, erythroblast numbers were increased in mice expressing human IgA1 compared to control mice. Hypoxic stress of these mice led to increased amounts of pIgA1 and erythroblast expansion. Expression of human IgA1 or treatment of wild-type mice with the TfR1 ligands pIgA1 or iron-loaded transferrin (Fe-Tf) accelerated recovery from acute anemia. TfR1 engagement by either pIgA1 or Fe-Tf increased cell sensitivity to Epo by inducing activation of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways. These cellular responses were mediated through the TfR1-internalization motif, YXXΦ. Our results show that pIgA1 and TfR1 are positive regulators of erythropoiesis in both physiological and pathological situations. Targeting this pathway may provide alternate approaches to the treatment of ineffective erythropoiesis and anemia.


Subject(s)
Anemia/physiopathology , Cell Proliferation , Erythroblasts/physiology , Erythropoiesis/physiology , Immunoglobulin A/metabolism , Animals , Cells, Cultured , Erythroblasts/cytology , Erythroblasts/drug effects , Erythropoietin/pharmacology , Humans , Hypoxia/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Mitogen-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Transferrin/metabolism , Signal Transduction/physiology , Transferrin/pharmacology
3.
J Exp Med ; 207(4): 731-50, 2010 Apr 12.
Article in English | MEDLINE | ID: mdl-20368581

ABSTRACT

Differentiating agents have been proposed to overcome the impaired cellular differentiation in acute myeloid leukemia (AML). However, only the combinations of all-trans retinoic acid or arsenic trioxide with chemotherapy have been successful, and only in treating acute promyelocytic leukemia (also called AML3). We show that iron homeostasis is an effective target in the treatment of AML. Iron chelating therapy induces the differentiation of leukemia blasts and normal bone marrow precursors into monocytes/macrophages in a manner involving modulation of reactive oxygen species expression and the activation of mitogen-activated protein kinases (MAPKs). 30% of the genes most strongly induced by iron deprivation are also targeted by vitamin D3 (VD), a well known differentiating agent. Iron chelating agents induce expression and phosphorylation of the VD receptor (VDR), and iron deprivation and VD act synergistically. VD magnifies activation of MAPK JNK and the induction of VDR target genes. When used to treat one AML patient refractory to chemotherapy, the combination of iron-chelating agents and VD resulted in reversal of pancytopenia and in blast differentiation. We propose that iron availability modulates myeloid cell commitment and that targeting this cellular differentiation pathway together with conventional differentiating agents provides new therapeutic modalities for AML.


Subject(s)
Cell Differentiation/drug effects , Cholecalciferol/pharmacology , Homeostasis/drug effects , Iron Chelating Agents/pharmacology , Iron/metabolism , Leukemia, Myeloid, Acute/drug therapy , Receptors, Transferrin/antagonists & inhibitors , Aged , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antigens, CD/immunology , Apoptosis/drug effects , Blood Cell Count , CD11b Antigen/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cholecalciferol/therapeutic use , Drug Synergism , Female , Gene Expression/drug effects , Gene Expression/genetics , Gene Expression Profiling , Granulocytes/cytology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/drug effects , Humans , Hydroxycholecalciferols/therapeutic use , Iron Chelating Agents/therapeutic use , Iron Deficiencies , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/metabolism , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Lipopolysaccharide Receptors/metabolism , Male , Mice , Mice, Nude , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , Monocytes/cytology , Monocytes/metabolism , Monocytes/pathology , Phosphorylation/drug effects , Reactive Oxygen Species/metabolism , Receptors, Calcitriol/metabolism , Receptors, Transferrin/immunology , Xenograft Model Antitumor Assays
4.
Nephron Exp Nephrol ; 112(1): e20-8, 2009.
Article in English | MEDLINE | ID: mdl-19342870

ABSTRACT

In this study we evaluated whether administration of stem cells of neural origin (neural precursor cells, NPCs) could be protective against renal ischemia-reperfusion injury (IRI). We hypothesized that stem cell outcomes are not tissue-specific and that NPCs can improve tissue damage through paracrine mechanisms, especially due to immunomodulation. To this end, Wistar rats (200-250 g) were submitted to 1-hour ischemia and treated with NPCs (4 x 10(6) cells/animal) at 4 h of reperfusion. To serve as controls, ischemic animals were treated with cerebellum homogenate harvested from adult rat brain. All groups were sacrificed at 24 h of reperfusion. NPCs were isolated from rat fetus telencephalon and cultured until neurosphere formation (7 days). Before administration, NPCs were labeled with carboxyfluorescein diacetate succinimydylester (CFSE). Kidneys were harvested for analysis of cytokine profile and macrophage infiltration. At 24 h, NPC treatment resulted in a significant reduction in serum creatinine (IRI + NPC 1.21 + 0.18 vs. IRI 3.33 + 0.14 and IRI + cerebellum 2.95 + 0.78 mg/dl, p < 0.05) and acute tubular necrosis (IRI + NPC 46.0 + 2.4% vs. IRI 79.7 + 14.2%, p < 0.05). NPC-CFSE and glial fibrillary acidic protein (GFAP)-positive cells (astrocyte marker) were found exclusively in renal parenchyma, which also presented GFAP and SOX-2 (an embryonic neural stem cell marker) mRNA expression. NPC treatment resulted in lower renal proinflammatory IL1-beta and TNF-alpha expression and higher anti-inflammatory IL-4 and IL-10 transcription. NPC-treated animals also had less macrophage infiltration and decreased serum proinflammatory cytokines (IL-1beta, TNF-alpha and INF-gamma). Our data suggested that NPC therapy improved renal function by influencing immunological responses.


Subject(s)
Kidney/blood supply , Neurons , Reperfusion Injury/therapy , Stem Cell Transplantation , Animals , Male , Rats , Rats, Wistar
5.
Int Immunopharmacol ; 9(6): 653-7, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19010452

ABSTRACT

The Kallikrein-kinin system works through activation of two receptors. One constitutive, named B2 receptor (B2R) and another inducible, denominated B1 receptor (B1R). In renal fibrosis, B2R receptor activation appears to be protective, however B1R participation is unveiled. The aim of this study was to analyze how the deletion of the B1R would modify tissue responses after unilateral ureteral obstruction (UUO). For that, B1R knockout (B1KO) and wild-type mice (B1B2WT) were subjected to UUO and sacrificed at days 1, 5 and 14. Renal dysfunction was assayed by urine proteinuria/creatinine ratio and percentage of tubulointerstitial fibrosis. Kidneys were harvested at day 5 to analyze anti and pro-inflammatory molecules expression by real-time PCR. We demonstrated that at all time points, B1KO mice presented lower proteinuria/creatinine ratio from bladder urine. B1KO protection was reinforced by its lower tubular interstitial fibrosis percentage at day 14 (B1B2WT: 12.16+/-1.53% vs. B1KO: 6.73+/-1.07%, p<0.02). UUO was able to induce B1R expression and its highest transcription was achieved at day 5. At this day, B1KO had significant lower expression of pro-inflammatory molecules such as TGF-beta, MCP-1, OPN and IL-6 and higher anti-inflammatory components, as IL-10 and HO-1. Herein, we observed that B1R deletion may be an important component in renal fibrosis prevention.


Subject(s)
Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney/pathology , Receptor, Bradykinin B1/genetics , Animals , Chemokine CCL2/immunology , Chemokine CCL2/metabolism , Creatinine/blood , Creatinine/urine , Fibrosis , Gene Deletion , Heme Oxygenase-1/immunology , Heme Oxygenase-1/metabolism , Interleukin-10/immunology , Interleukin-10/metabolism , Interleukin-6/immunology , Interleukin-6/metabolism , Kallikrein-Kinin System/genetics , Kidney Diseases/etiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Proteinuria/urine , Transforming Growth Factor beta/immunology , Transforming Growth Factor beta/metabolism , Ureteral Obstruction/complications
6.
Transpl Int ; 21(10): 999-1007, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18657091

ABSTRACT

Ischemic-reperfusion injury (IRI) triggers an inflammatory response involving neutrophils/macrophages, lymphocytes and endothelial cells. Galectin-3 is a multi-functional lectin with a broad range of action such as promotion of neutrophil adhesion, induction of oxidative stress, mastocyte migration and degranulation, and production of pro-inflammatory cytokines. The aim of this study was evaluate the role of galectin-3 in the inflammation triggered by IRI. Galectin-3 knockout (KO) and wild type (wt) mice were subjected to 45 min of renal pedicle occlusion. Blood and kidney samples were collected at 6, 24, 48 and 120 h. Blood urea was analyzed enzymatically, while MCP-1, IL-6 and IL-1beta were studied by real-time PCR. Reactive oxygen species (ROS) was investigated by flow cytometry. Morphometric analyses were performed at 6, 24, 48 and 120 h after reperfusion. Urea peaked at 24 h, being significantly lower in knockout animals (wt = 264.4 +/- 85.21 mg/dl vs. gal-3 KO = 123.74 +/- 29.64 mg/dl, P = 0.001). Galectin-3 knockout animals presented less acute tubular necrosis and a more prominent tubular regeneration when compared with controls concurrently with lower expression of MCP-1, IL-6, IL-1beta, less macrophage infiltration and lower ROS production at early time points. Galectin-3 seems to play a role in renal IRI involving the secretion of macrophage-related chemokine, pro-inflammatory cytokines and ROS production.


Subject(s)
DNA/genetics , Galectin 3/genetics , Gene Expression , Kidney Transplantation/pathology , Kidney/blood supply , Reperfusion Injury/metabolism , Animals , Autoantigens , Biomarkers , Chemokine CCL2/biosynthesis , Chemokine CCL2/genetics , Disease Models, Animal , Flow Cytometry , Follow-Up Studies , Galectin 3/biosynthesis , Immunohistochemistry , Interleukin-1beta/biosynthesis , Interleukin-1beta/genetics , Interleukin-6/biosynthesis , Interleukin-6/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Polymerase Chain Reaction , Reactive Oxygen Species/metabolism , Reperfusion Injury/pathology
7.
Int Immunopharmacol ; 6(13-14): 1960-5, 2006 Dec 20.
Article in English | MEDLINE | ID: mdl-17161349

ABSTRACT

Bradykinin B1 receptors are exclusively expressed in inflamed tissues. For this reason, they have been related with the outcomes of several pathologies. Ischemia-reperfusion injury is caused by the activation of inflammatory and cytoprotective genes, such as macrophage chemoattractant protein-1 and heme oxygenase-1, respectively. This study was aimed to analyze the involvement of bradykinin B1 and B2 receptors (B1R and B2R) in tissue response after renal ischemia-reperfusion injury. For that, B1R (B1-/-), B2R (B2-/-) knockout animals and its control (wild-type mice, B1B2+/+) were subjected to renal bilateral ischemia, followed by 24, 48 and 120 h of reperfusion. At these time points, blood serum samples were collected for creatinine and urea dosages. Kidneys were harvested for histology and molecular analyses by real-time PCR. At 24 and 48 h of reperfusion, B1-/- group resulted in the lowest serum creatinine and urea levels, indicating less renal damage, which was proved by renal histology. Renal protection associated with B1-/- mice was also related with higher expression of HO-1 and lower expression of MCP-1. In conclusion, the absence of B1R had a protective role against inflammatory responses developed after renal ischemia-reperfusion injury.


Subject(s)
Inflammation/genetics , Receptor, Bradykinin B1/genetics , Receptor, Bradykinin B2/genetics , Reperfusion Injury/genetics , Animals , Chemokine CCL2/genetics , Creatine/blood , Gene Expression/genetics , Heme Oxygenase-1/genetics , Inflammation/metabolism , Kidney/metabolism , Kidney/pathology , Kidney/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptor, Bradykinin B1/physiology , Receptor, Bradykinin B2/physiology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Urea/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...