Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
1.
Article in English | MEDLINE | ID: mdl-38607367

ABSTRACT

An aerobic methanotroph was isolated from a secondary sedimentation tank of a wastewater treatment plant and designated strain OY6T. Cells of OY6T were Gram-stain-negative, pink-pigmented, motile rods and contained an intracytoplasmic membrane structure typical of type I methanotrophs. OY6T could grow at a pH range of 4.5-7.5 (optimum pH 6.5) and at temperatures ranging from 20 °C to 37 °C (optimum 30 °C). The major cellular fatty acids were C14 : 0, C16 : 1ω7c/C16 : 1ω6c and C16 : 1ω5c; the predominant respiratory quinone was MQ-8. The genome size was 5.41 Mbp with a DNA G+C content of 51.7 mol%. OY6T represents a member of the family Methylococcaceae of the class Gammaproteobacteria and displayed 95.74-99.64 % 16S rRNA gene sequence similarity to the type strains of species of the genus Methylomonas. Whole-genome comparisons based on average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) confirmed that OY6T should be classified as representing a novel species. The most closely related type strain was Methylomonas fluvii EbBT, with 16S rRNA gene sequence similarity, ANI by blast (ANIb), ANI by MUMmer (ANIm) and dDDH values of 99.64, 90.46, 91.92 and 44.5 %, respectively. OY6T possessed genes encoding both the particulate methane monooxygenase enzyme and the soluble methane monooxygenase enzyme. It grew only on methane or methanol as carbon sources. On the basis of phenotypic, genetic and phylogenetic data, strain OY6T represents a novel species within the genus Methylomonas for which the name Methylomonas defluvii sp. nov. is proposed, with strain OY6T (=GDMCC 1.4114T=KCTC 8159T=LMG 33371T) as the type strain.


Subject(s)
Methylococcaceae , Methylomonas , Methane , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , Fatty Acids/chemistry , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Bacteria , Methylococcaceae/genetics , Oxidation-Reduction
2.
Water Res ; 256: 121572, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38621316

ABSTRACT

The exploration of antibiotic resistance genes (ARGs) in drinking water reservoirs is an emerging field. Using a curated database, we enhanced the ARG detection and conducted a comprehensive analysis using 2.2 Tb of deep metagenomic sequencing data to determine the distribution of ARGs across 16 drinking water reservoirs and associated environments. Our findings reveal a greater diversity of ARGs in sediments than in water, underscoring the importance of extensive background surveys. Crucial ARG carriers-specifically Acinetobacter, Pseudomonas, and Mycobacterium were identified in drinking water reservoirs. Extensive analysis of the data uncovered a considerable concern for drinking water safety, particularly in regions reliant on river sources. Mobile genetic elements have been found to contribute markedly to the propagation of ARGs. The results of this research suggest that the establishment of drinking water reservoirs for supplying raw water may be an effective strategy for alleviating the spread of water-mediated ARGs.


Subject(s)
Drinking Water , Drug Resistance, Microbial , Metagenomics , Drinking Water/microbiology , Drug Resistance, Microbial/genetics , Water Microbiology , Drug Resistance, Bacterial/genetics , Water Supply
3.
Curr Eye Res ; 49(6): 591-604, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38450708

ABSTRACT

PURPOSE: Fibrotic cataracts, including anterior subcapsular cataract (ASC) as well as posterior capsule opacification (PCO), are a common vision-threatening cause worldwide. Still, little is known about the underlying mechanisms. Here, we demonstrate a miRNA-based pathway regulating the pathological fibrosis process of lens epithelium. METHODS: Gain- and loss-of-function approaches, as well as multiple fibrosis models of the lens, were applied to validate the crucial role of two miR-1225 family members in the TGF-ß2 induced PCO model of human LECs and injury-induced ASC model in mice. RESULTS: Both miR-1225-3p and miR-1225-5p prominently stimulate the migration and EMT process of lens epithelial cells (LECs) in vitro as well as lens fibrosis in vivo. Moreover, we demonstrated that the underlying mechanism for these effects of miR-1225-5p is via directly targeting Keap1 to regulate Keap1/Nrf2 signaling. In addition, evidence showed that Keap1/Nrf2 signaling is activated in the TGF-ß2 induced PCO model of human LECs and injury-induced ASC model in mice, and inhibition of the Nrf2 pathway can significantly reverse the process of LECs EMT as well as lens fibrosis. CONCLUSIONS: These results suggest that blockade of miR-1225-5p prevents lens fibrosis via targeting Keap1 thereby inhibiting Nrf2 activation. The 'miR-1225-Keap1-Nrf2' signaling axis presumably holds therapeutic promise in the treatment of fibrotic cataracts.


Subject(s)
Cataract , Disease Models, Animal , Fibrosis , Kelch-Like ECH-Associated Protein 1 , Mice, Inbred C57BL , MicroRNAs , NF-E2-Related Factor 2 , Signal Transduction , Animals , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , MicroRNAs/genetics , Mice , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Humans , Cataract/metabolism , Cataract/genetics , Cataract/pathology , Lens, Crystalline/metabolism , Lens, Crystalline/pathology , Gene Expression Regulation , Cells, Cultured , Epithelial Cells/metabolism , Blotting, Western , Cell Movement , Epithelial-Mesenchymal Transition
4.
J Gastrointest Oncol ; 15(1): 1-11, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38482217

ABSTRACT

Background: The prognosis for esophageal cancer (EC), a common malignant tumor, is poor. The new oral small-molecule tyrosine kinase inhibitor apatinib has shown an excellent therapeutic effect on treating EC. Camrelizumab is a humanized programmed death 1 (PD-1) inhibitor with high affinity. Immune checkpoint inhibitors combined with chemotherapy have become the standard first-line treatment for advanced EC. The new combination strategy of anti-angiogenic therapy combined with immunotherapy has great application prospects in the treatment of tumors. We aimed to assess camrelizumab in combination with apatinib as a new combination regimen for advanced or metastatic esophageal squamous cell carcinoma (ESCC). Methods: In this study, we recruited patients with an Eastern Cooperative Oncology Group (ECOG) performance status ≤2, with pathologically confirmed unresectable, locally advanced, locally recurrent, or metastatic ESCC. Each patient received an intravenous infusion of camrelizumab 200 mg and oral administration of apatinib 250 mg once a day, every 21 days, as a cycle until disease progression, intolerance, or death. The primary endpoint was the objective response rate (ORR), while the Kaplan-Meier method and LIFETEST procedure were used to estimate survival functions for overall survival (OS) and progression-free survival (PFS). The National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.03, was used to evaluate adverse events. Results: Between December 1, 2019 and July 31, 2022, 35 patients were enrolled, with 29 patients in the efficacy and safety analysis. The ORR was 34.5%, and the disease control rate (DCR) reached 82.8%. Median OS was 13.8 months (95% CI: 11.2-16.2), and the estimated 6-, 9-, and 12-month OS rates were 85.5% (95% CI: 65.7-94.3%), 80.9% (95% CI: 60.3-91.5%), and 67.0% (95% CI: 43.8-82.4%), respectively. Median PFS was 9.5 months (95% CI: 7.0-13.6). The most prominent grade ≥3 adverse events associated with treatments were alanine aminotransferase (ALT) increase (10.3%), hypertension (10.3%), and reactive cutaneous capillary endothelial proliferation (CCEP) (6.9%), and no deaths occurred due to adverse events. Conclusions: Among patients with advanced or metastatic ESCC, camrelizumab combined with apatinib showed a reasonable remission rate and survival benefit with a manageable safety profile.

5.
Article in English | MEDLINE | ID: mdl-38454765

ABSTRACT

OBJECTIVES: This study aimed to explore new therapeutic drugs for multiple myeloma (MM). MM is a common plasma cell malignant proliferative disease, accounting for 15% of hematological malignancies. The role of daptomycin (DAP), a potential anti-tumor drug, remains unclear in MM. In the present research, we investigated the anticancer effect of DAP in MM cell line RPMI 8226. METHODS: RPMI 8226 cells were treated with DAP (20 µM, 40 µM, and 80 µM) with 20 nM bortezomib (BZ) as a positive control. Cell function was detected using CCK8, flow cytometry, and transwell assay. RESULTS: In MM cells, DAP inhibited proliferation and induced apoptosis. The cell cycle was arrested at the G1 phase after the treatment of DAP. The migration and invasion abilities were also inhibited by DAP treatment in RPMI 8226 cells. Importantly, the mRNA and protein levels of RPS19 were downregulated in DAP-treated RPMI 8226 cells. CONCLUSION: DAP inhibited the proliferation, migration, and invasion and promoted the apoptosis of MM cells. Mechanistically, the RPS19 expression was significantly decreased in DAPtreated cells. This research provides a potential therapeutic drug for MM therapy.

6.
Mater Horiz ; 11(6): 1414-1425, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38363093

ABSTRACT

Taking advantage of a hybrid generator to simultaneously collect polynary energy from a single energy source provides a feasible solution for the energy dilemma in the new era. Herein, we integrate a triboelectric nanogenerator and a thermoelectric generator for polynary energy harvesting and self-powered sensing of heatwaves in large-scale industrial factory buildings, which contains both thermal energy and wind energy. The new design of the fan-shaped rotation triboelectric nanogenerator (FR-TENG) makes it more compact and easily integrated. After structure modeling, the energy conversion efficiency of the FR-TENG can reach a maximum of 37.2%, which can successfully power a Bluetooth hygrothermograph transmitting environmental information wirelessly every 30 s at a wind speed of 4.67 m s-1. An all-inorganic flexible thermoelectric generator (iThEG) is developed based on copper and constantan with an output power density of 0.73 W m-3, and maintains its original mechanical properties after 10 000 bending tests. Moreover, a self-powered hot wind sensing system based on Labview is established which can display wind-speed and wind-temperature in real time. The working concept presented here is also applicable to other single energy sources containing multiple energy forms, such as falling raindrops and sunlight, which can lift energy utilization and conversion efficiency and alleviate the energy crisis.

7.
Cell Commun Signal ; 22(1): 98, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38317235

ABSTRACT

NRAS mutations are most frequently observed in hematological malignancies and are also common in some solid tumors such as melanoma and colon cancer. Despite its pivotal role in oncogenesis, no effective therapies targeting NRAS has been developed. Targeting NRAS localization to the plasma membrane (PM) is a promising strategy for cancer therapy, as its signaling requires PM localization. However, the process governing NRAS translocation from the Golgi apparatus to the PM after lipid modification remains elusive. This study identifies GOLGA7 as a crucial factor controlling NRAS' PM translocation, demonstrating that its depletion blocks NRAS, but not HRAS, KRAS4A and KRAS4B, translocating to PM. GOLGA7 is known to stabilize the palmitoyltransferase ZDHHC9 for NRAS and HRAS palmitoylation, but we found that GOLGA7 depletion does not affect NRAS' palmitoylation level. Further studies show that loss of GOLGA7 disrupts NRAS anterograde trafficking, leading to its cis-Golgi accumulation. Remarkably, depleting GOLGA7 effectively inhibits cell proliferation in multiple NRAS-mutant cancer cell lines and attenuates NRASG12D-induced oncogenic transformation in vivo. These findings elucidate a specific intracellular trafficking route for NRAS under GOLGA7 regulation, highlighting GOLGA7 as a promising therapeutic target for NRAS-driven cancers.


Subject(s)
Lipoylation , Signal Transduction , Cell Membrane/metabolism , Cell Line , Mutation , Golgi Apparatus/metabolism
8.
ACS Appl Mater Interfaces ; 16(7): 9333-9342, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38345015

ABSTRACT

Flexible tactile sensors play an important role in the development of wearable electronics and human-machine interaction (HMI) systems. However, poor sensing abilities, an indispensable external energy supply, and limited material selection have significantly constrained their advancement. Herein, a self-powered flexible triboelectric sensor (TES) is proposed by integrating lotus-root-derived porous carbon (PC) into polydimethylsiloxane (PDMS). Owing to the superior charge capturing capability of PC, the PDMS/PC (PPC)-based TES exhibits an open-circuit voltage (Voc) of 22.8 V when it is periodically patted by skin at the pressure of 2 N and the frequency of 1 Hz, which is 5 times higher than that of a pristine PDMS-based TES. Furthermore, the as-prepared self-powered TES exhibits a high sensitivity of 3.24 V kPa-1 below 15 kPa for detecting human motion signals, such as finger clicks, joint bends, etc. Last but not the least, after the assembly of a PPC-based TES array and construction of an HMI system, the robotic snake can be controlled remotely by recognizing finger touching signals. This work shows broad potential applications for the self-powered TES in the fields of intelligent robotics, flexible electronics, disaster relief, and intelligence spying.


Subject(s)
Carbon , Touch , Humans , Porosity , Skin , Motion
9.
Plant Commun ; 5(4): 100817, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38217288

ABSTRACT

Noncoding small RNAs (sRNAs) packaged in bacterial outer membrane vesicles (OMVs) function as novel mediators of interspecies communication. While the role of bacterial sRNAs in enhancing virulence is well established, the role of sRNAs in the interaction between OMVs from phytopathogenic bacteria and their host plants remains unclear. In this study, we employ RNA sequencing to characterize differentially packaged sRNAs in OMVs of the phytopathogen Xanthomonas oryzae pv. oryzicola (Xoc). Our candidate sRNA (Xosr001) was abundant in OMVs and involved in the regulation of OsJMT1 to impair host stomatal immunity. Xoc loads Xosr001 into OMVs, which are specifically ttransferred into the mechanical tissues of rice leaves. Xosr001 suppresses OsJMT1 transcript accumulation in vivo, leading to a reduction in MeJA accumulation in rice leaves. Furthermore, the application of synthesized Xosr001 sRNA to the leaves of OsJMT1-HA-OE transgenic line results in the suppression of OsJMT1 expression by Xosr001. Notably, the OsJMT1-HA-OE transgenic line exhibited attenuated stomatal immunity and disease susceptibility upon infection with ΔXosr001 compared to Xoc. These results suggest that Xosr001 packaged in Xoc OMVs functions to suppress stomatal immunity in rice.


Subject(s)
RNA, Bacterial , RNA, Small Untranslated , RNA, Bacterial/genetics , Virulence , Base Sequence
10.
Cancer Res ; 84(6): 905-918, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38231480

ABSTRACT

FLT3 internal tandem duplication (FLT3-ITD) mutations are one of the most prevalent somatic alterations associated with poor prognosis in patients with acute myeloid leukemia (AML). The clinically approved FLT3 kinase inhibitors gilteritinib and quizartinib improve the survival of patients with AML with FLT3-ITD mutations, but their long-term efficacy is limited by acquisition of secondary drug-resistant mutations. In this study, we conducted virtual screening of a library of 60,411 small molecules and identified foretinib as a potent FLT3 inhibitor. An integrated analysis of the BeatAML database showed that foretinib had a lower IC50 value than other existing FLT3 inhibitors in patients with FLT3-ITD AML. Foretinib directly bound to FLT3 and effectively inhibited FLT3 signaling. Foretinib potently inhibited proliferation and promoted apoptosis in human AML cell lines and primary AML cells with FLT3-ITD mutations. Foretinib also significantly extended the survival of mice bearing cell-derived and patient-derived FLT3-ITD xenografts, exhibiting stronger efficacy than clinically approved FLT3 inhibitors in treating FLT3-ITD AML. Moreover, foretinib showed potent activity against secondary mutations of FLT3-ITD that confer resistance to quizartinib and gilteritinib. These findings support the potential of foretinib for treating patients with AML with FLT3-ITD mutations, especially for those carrying secondary mutations after treatment failure with other FLT3 inhibitors. SIGNIFICANCE: Foretinib exhibits superior efficacy to approved drugs in AML with FLT3-ITD mutations and retains activity in AML with secondary FLT3 mutations that mediate resistance to clinical FLT3 inhibitors.


Subject(s)
Anilides , Aniline Compounds , Benzothiazoles , Leukemia, Myeloid, Acute , Phenylurea Compounds , Protein Kinase Inhibitors , Pyrazines , Quinolines , Humans , Mice , Animals , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , fms-Like Tyrosine Kinase 3/genetics
11.
Nanomaterials (Basel) ; 14(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38276747

ABSTRACT

A dual-band electrochromic supercapacitor device (DESCD) can be driven by an external power supply to modulate solar radiation, which is a promising energy-saving strategy and has broad application prospects in smart windows. However, traditional power supplies, such as batteries, supercapacitors, etc., usually face limited lifetimes and potential environmental issues. Hence, we propose a self-powered DESCD based on TiO2/WO3 dual-band electrochromic material and a ternary dielectric rotating triboelectric nanogenerator (TDR-TENG). The TDR-TENG can convert mechanical energy from the environment into electrical energy to obtain a high output of 840 V, 23.9 µA, and 327 nC. The as-prepared TDR-TENG can drive the TiO2/WO3 film to store energy with a high dual-band modulation amplitude of 41.6% in the visible (VIS) region and 84% in the near-infrared (NIR) region, decreasing the indoor-outdoor light-heat interaction and thereby reducing the building energy consumption. The self-powered DESCD demonstrated in this study has multiple functions of energy harvesting, energy storage, and energy saving, providing a promising strategy for the development of self-powered smart windows.

12.
Cancer Cell Int ; 23(1): 302, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38037057

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) with FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) mutation accounts for a large proportion of AML patients and diagnosed with poor prognosis. Although the prognosis of FLT3-ITD AML has been greatly improved, the drug resistance frequently occurred in the treatment of FLT3 targeting drugs. GNF-7, a multitargeted kinase inhibitor, which provided a novel therapeutic strategy for overriding leukemia. In this study, we explored the antitumor activity of GNF-7 against FLT3-ITD and clinically-relevant drug resistance in FLT3 mutant AML. METHODS: Growth inhibitory assays were performed in AML cell lines and Ba/F3 cells expressing various FLT3 mutants to evaluate the antitumor activity of GNF-7 in vitro. Western blotting was used to examine the inhibitory  effect of GNF-7 on FLT3 and its downstream pathways. Molecular docking and cellular thermal shift assay (CETSA) were performed to demonstrate the binding of FLT3 to GNF-7. The survival benefit of GNF-7 in vivo was assessed in mouse models of transformed Ba/F3 cells harboring FLT3-ITD and FLT3-ITD/F691L mutation. Primary patient samples and a patient-derived xenograft (PDX) model were also used to determine the efficacy of GNF-7. RESULTS: GNF-7 inhibited the cell proliferation of Ba/F3 cells expressing FLT3-ITD and exhibited potently anti-leukemia activity on primary FLT3-ITD AML samples. Moreover, GNF-7 could bind to FLT3 protein and inhibit the downstream signaling pathway activated by FLT3 including STAT5, PI3K/AKT and MAPK/ERK. In vitro and in vivo studies showed that GNF-7 exhibited potent inhibitory activity against FLT3-ITD/F691L that confers resistant to quizartinib (AC220) or gilteritinib. Importantly, GNF-7 showed potent cytotoxic effect on leukemic stem cells, significantly extend the survival of PDX model and exhibited similar therapy effect compared with gilteritinib. CONCLUSIONS: Our results show that GNF-7 is a potent FLT3-ITD inhibitor and may become a promising lead compound applied for treating some of the clinically drug resistant patients.

13.
Materials (Basel) ; 16(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37109870

ABSTRACT

The development and utilization of new energy sources is an effective means of addressing the limits of traditional fossil energy resources and the problem of environmental pollution. Triboelectric nanogenerators (TENG) show great potential for applications in harvesting low-frequency mechanical energy from the environment. Here, we propose a multi-cylinder-based triboelectric nanogenerator (MC-TENG) with broadband and high space utilization for harvesting mechanical energy from the environment. The structure consisted of two TENG units (TENG I and TENG II) assembled by a central shaft. Both an internal rotor and an external stator were included in each TENG unit, operating in oscillating and freestanding layer mode. On one hand, the resonant frequencies of the masses in the two TENG units were different at the maximum angle of oscillation, allowing for energy harvesting in a broadband range (2.25-4 Hz). On the other hand, the internal space of TENG II was fully utilized, and the maximum peak power of the two TENG units connected in parallel reached 23.55 mW. In contrast, the peak power density reached 31.23 Wm-3, significantly higher than that of a single TENG unit. In the demonstration, the MC-TENG could power 1000 LEDs, a thermometer/hygrometer, and a calculator continuously. Therefore, the MC-TENG will have excellent application in the field of blue energy harvesting in the future.

14.
Biomark Res ; 11(1): 8, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36691065

ABSTRACT

BACKGROUND: Gilteritinib is the only drug approved as monotherapy for acute myeloid leukemia (AML) patients harboring FMS-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) mutation throughout the world. However, drug resistance inevitably develops in clinical. Sitravatinib is a multi-kinase inhibitor under evaluation in clinical trials of various solid tumors. In this study, we explored the antitumor activity of sitravatinib against FLT3-ITD and clinically-relevant drug resistance in FLT3 mutant AML. METHODS: Growth inhibitory assays were performed in AML cell lines and BaF3 cells expressing various FLT3 mutants to evaluate the antitumor activity of sitravatinib in vitro. Immunoblotting was used to examine the activity of FLT3 and its downstream pathways. Molecular docking was performed to predict the binding sites of FLT3 to sitravatinib. The survival benefit of sitravatinib in vivo was assessed in MOLM13 xenograft mouse models and mouse models of transformed BaF3 cells harboring different FLT3 mutants. Primary patient samples and a patient-derived xenograft (PDX) model were also used to determine the efficacy of sitravatinib. RESULTS: Sitravatinib inhibited cell proliferation, induced cell cycle arrest and apoptosis in FLT3-ITD AML cell lines. In vivo studies showed that sitravatinib exhibited a better therapeutic effect than gilteritinib in MOLM13 xenograft model and BaF3-FLT3-ITD model. Unlike gilteritinib, the predicted binding sites of sitravatinib to FLT3 did not include F691 residue. Sitravatinib displayed a potent inhibitory effect on FLT3-ITD-F691L mutation which conferred resistance to gilteritinib and all other FLT3 inhibitors available, both in vitro and in vivo. Compared with gilteritinib, sitravatinib retained effective activity against FLT3 mutation in the presence of cytokines through the more potent and steady inhibition of p-ERK and p-AKT. Furthermore, patient blasts harboring FLT3-ITD were more sensitive to sitravatinib than to gilteritinib in vitro and in the PDX model. CONCLUSIONS: Our study reveals the potential therapeutic role of sitravatinib in FLT3 mutant AML and provides an alternative inhibitor for the treatment of AML patients who are resistant to current FLT3 inhibitors.

15.
ACS Appl Mater Interfaces ; 15(4): 5242-5252, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36661114

ABSTRACT

Electrospinning is an effective method to prepare polyvinylidene fluoride (PVDF) piezoelectric fibers with a high-percentage ß phase. However, as an energy conversion material for micro- and nanoscale diameters, PVDF fibers have not been widely used due to their disordered arrangement prepared by traditional electrospinning. Here, we designed a near-field electro-spinning (NFES) system driven by a triboelectric nanogenerator (TENG) to prepare PVDF fibers. The effects of five important parameters (PVDF concentration, needle inner diameter, TENG pulse DC voltage (TPD-voltage), flow rate, and drum speed) on the ß phase fraction of PVDF fiber were optimized one by one. The results showed that the electrospun PVDF fibers had uniform diameter and controllable parallel arrangement. The ß phase content of the optimized PVDF fiber reached 91.87 ± 0.61%. For the bending test of a single PVDF fiber piezoelectric device, when the strain is 0.098%, the electric energy of the single PVDF fiber device of NFES reaches 7.74 pJ and the energy conversion efficiency reaches 13.5%, which is comparable to the fibers prepared by the commercial power-driven NFES system. In 0.5 Hz, the best matching load resistance of a PVDF single fiber device is 10.6 MΩ, the voltage is 6.1 mV, and the maximum power is 3.52 pW. Considering that TENG can harvest micromechanical energy in the low frequency environment, the application scenario of the NFES system can be extended to the wild or remote mountainous areas without traditional high-voltage power supply. Therefore, the electrospun PVDF fibers in this system will have potential applications in high-precision 3D fabrication, self-powered sensors, and flexible wearable electronic products.

16.
ISA Trans ; 135: 524-536, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36253164

ABSTRACT

Regarding a general class of integrating processes subject to uncertain delays, this paper investigates a two-degree-of-freedom (2-Dof) control scheme with a proportional-derivative (PD) controller and disturbance observer (DOB). Relative delay margin is introduced as a paramount metric to evaluate the delay robustness, with which a set of novel and explicit tuning formulae for PD controller is analytically derived under the single external loop. In this individual frame, the stability boundaries associated with the governing parameters are first studied, indicating the nominal stability conditions for the 2-Dof control system. Then the optimal tracking problem is formulated and addressed with such delay robustness constraints. For the design of the internal loop, the performance of DOB will be quantified by the trade-off between the external relative delay margin and the disturbance rejection, thus retaining the original PD controller design. Besides, the stability in the nominal delay range is primarily concerned when demarcating the low-pass filter in DOB, based on which a critical time constant is obtained through exhaustive testing. Following the route of combining analytical design with quantitative adjustment, the synthetic tuning rules can provide prescribed robustness against delay uncertainty for integrating processes. Through conducting illustrative simulations and a water tank experiment, the efficiency and merit of the proposed scheme are demonstrated.

17.
Pathogens ; 11(11)2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36365016

ABSTRACT

Burkholderia glumae is an important rice pathogen, thus the genomic and evolutionary history may be helpful to control this notorious pathogen. Here, we present two complete genomes of the B. glumae strains HN1 and HN2, which were isolated from diseased rice seed in China. Average nucleotide identity (ANI) analysis shows greater than 99% similarity of the strains HN1 and HN2 with other published B. glumae genomes. Genomic annotation revealed that the genome of strain HN1 consists of five replicons (6,680,415 bp) with an overall G + C content of 68.06%, whereas the genome of strain HN2 comprises of three replicons (6,560,085 bp) with an overall G + C content of 68.34%. The genome of HN1 contains 5434 protein-coding genes, 351 pseudogenes, and 1 CRISPR, whereas the genome of HN2 encodes 5278 protein-coding genes, 357 pseudogenes, and 2 CRISPR. Both strains encode many pathogenic-associated genes (143 genes in HN1 vs. 141 genes in HN2). Moreover, comparative genomic analysis shows the extreme plasticity of B. glumae, which may contribute to its pathogenicity. In total, 259 single-copy genes were affected by positive selection. These genes may contribute to the adaption to different environments. Notably, six genes were characterized as virulence factors which may be an additional way to assist the pathogenicity of B. glumae.

18.
BMJ Open ; 12(9): e060635, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36113943

ABSTRACT

OBJECTIVE: This study examined the prevalence of exposure to secondhand smoke, its correlates and its association with quality of life (QOL) among pregnant and postnatal Chinese women. DESIGN: This was a multicentre, cross-sectional study. SETTING: Participants were consecutively recruited from eight tertiary hospitals located in eight municipalities or provinces in China. PARTICIPANTS: A total of 1140 women were invited to join this study and 992 (87.02%) completed all measures. PRIMARY AND SECONDARY OUTCOME: Measures women's secondhand smoking behaviour (frequency and location of exposure to secondhand smoking), and their QOL measured by the WHO Quality of Life Questionnaire. RESULTS: A total of 211 women (21.3%, 95% CI 18.7% to 23.8%) had been exposed to secondhand smoking. Exposure to secondhand smoking was most common in public areas (56.4%), and residential homes (20.5%), while workplaces had the lowest rate of exposure (13.7%). Women with physical comorbidities were more likely to report secondhand smoking exposure, while older women, women living in urban areas, those with college or higher education level, and women in their second trimester were less likely to report exposure to secondhand smoking. Network analysis revealed that there were six significant links between secondhand smoke and QOL items. The strongest negative edge was the connection between secondhand smoke and QOL9 ('physical environment health', edge weight=-0.060), while the strongest positive edge was the connection between secondhand smoke and QOL3 ('pain and discomfort', edge weight=0.037). CONCLUSION: The prevalence of exposure to secondhand smoking is becoming lower among pregnant and postnatal women in China compared with findings reported in previous studies. Legal legislation should be maintained and promptly enforced to establish smoke-free environments in both public and private urban/rural areas for protection of pregnant and postnatal women, especially those who are physically vulnerable and less educated.


Subject(s)
Tobacco Smoke Pollution , Aged , China/epidemiology , Cross-Sectional Studies , Female , Humans , Pregnancy , Quality of Life , Surveys and Questionnaires , Tobacco Smoke Pollution/prevention & control
19.
Sensors (Basel) ; 22(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36146247

ABSTRACT

This paper discusses an active droplet generation system, and the presented droplet generator successfully performs droplet generation using two fluid phases: continuous phase fluid and dispersed phase fluid. The performance of an active droplet generation system is analysed based on the droplet morphology using vision sensing and digital image processing. The proposed system in the study includes a droplet generator, camera module with image pre-processing and identification algorithm, and controller and control algorithm with a workstation computer. The overall system is able to control, sense, and analyse the generation of droplets. The main controller consists of a microcontroller, motor controller, voltage regulator, and power supply. Among the morphological features of droplets, the diameter is extracted from the images to observe the system performance. The MATLAB-based image processing algorithm consists of image acquisition, image enhancement, droplet identification, feature extraction, and analysis. RGB band filtering, thresholding, and opening are used in image pre-processing. After the image enhancement, droplet identification is performed by tracing the boundary of the droplets. The average droplet diameter varied from ~3.05 mm to ~4.04 mm in the experiments, and the average droplet diameter decrement presented a relationship of a second-order polynomial with the droplet generation time.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Algorithms
20.
Front Cell Infect Microbiol ; 12: 846063, 2022.
Article in English | MEDLINE | ID: mdl-35493727

ABSTRACT

Viruses are increasingly viewed as vital components of the human gut microbiota, while their roles in health and diseases remain incompletely understood. Here, we first sequenced and analyzed the 37 metagenomic and 18 host metabolomic samples related to irritable bowel syndrome (IBS) and found that some shifted viruses between IBS and controls covaried with shifted bacteria and metabolites. Especially, phages that infect beneficial lactic acid bacteria depleted in IBS covaried with their hosts. We also retrieved public whole-genome metagenomic datasets of another four diseases (type 2 diabetes, Crohn's disease, colorectal cancer, and liver cirrhosis), totaling 438 samples including IBS, and performed uniform analysis of the gut viruses in diseases. By constructing disease-specific co-occurrence networks, we found viruses actively interacting with bacteria, negatively correlated with possible dysbiosis-related and inflammation-mediating bacteria, increasing the connectivity between bacteria modules, and contributing to the robustness of the networks. Functional enrichment analysis showed that phages interact with bacteria through predation or expressing genes involved in the transporter and secretion system, metabolic enzymes, etc. We further built a viral database to facilitate systematic functional classification and explored the functions of viral genes on interacting with bacteria. Our analyses provided a systematic view of the gut virome in the disease-related microbial community and suggested possible positive roles of viruses concerning gut health.


Subject(s)
Bacteriophages , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Irritable Bowel Syndrome , Microbiota , Viruses , Bacteria/genetics , Bacteriophages/genetics , Gastrointestinal Microbiome/genetics , Humans , Virome/genetics , Viruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...