Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 912: 168671, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-37996025

ABSTRACT

The implementation of roadside air purifiers has emerged as an effective active control measure to alleviate air pollution in urban street canyons. However, technical questions raised under real conditions remain challenging. In this study, we conducted a pilot-scale investigation involving seven units of self-designed roadside air purifiers in an urban street canyon in Hong Kong. The air cleaning effects were quantified with an air quality sensor network after rigorous quality control. The removal efficiencies of Nitrogen dioxide (NO2), Fine suspended particulates (PM2.5), Carbon monoxide (CO), and Nitric oxide (NO) were determined by comparing with simultaneously measured ambient concentrations, with hourly average efficiencies of 14.0 %-16.9 %, 3.5-10.0 %, 11.9 %-18.7 %, and 19.2 %-44.9 %, respectively. Generally, the purification effects presented variations depending on the ambient pollutants' levels. Higher ambient concentrations of NO2, PM2.5, CO correlated with increased purification effects, while NO presented the opposite trend. The influence of interval distance combined with spatial distribution indicated the operation of purifiers will induce local NO2 attenuation even at an interval distance of four meters. Statistical analysis delivered evidence the air cleaning ability exhibited optimal performance when relative humidity level is ranged from 70 % to 90 %, aligning with the prevailing conditions in Hong Kong. Additionally, improved purification effects were observed at the downwind direction, and their performance was enhanced when the wind speed exceeded 2.5 m/s. Moreover, we estimated the operational lifetime of the air purifiers to be approximately 130 days, offering crucial information regarding the filter replacement cycle. This work serves as a pioneering case study, showcasing the feasibility and deployment considerations of roadside air purifiers in effectively controlling air pollution in urban environments.

2.
Environ Sci Technol ; 57(45): 17598-17609, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37906717

ABSTRACT

Activating surface lattice oxygen (Olatt) through the modulation of metal-oxygen bond strength has proven to be an effective route for facilitating the catalytic degradation of volatile organic compounds (VOCs). Although this strategy has been implemented via the construction of the TM1-O-TM2 (TM represents a transition metal) structure in various reactions, the underlying principle requires exploration when using different TMs. Herein, the Cu2+-O-Fe3+ structure was created by developing CuO-Fe3O4 composites with enhanced interfacial effect, which exhibited superior catalytic activity to their counterparts, with T90 (the temperature of toluene conversion reaching 90%) decreasing by approximately 50 °C. Structural analyses and theoretical calculations demonstrated that the active Cu2+-O-Fe3+ sites at the CuO-Fe3O4 interface improved low-temperature reducibility and oxygen species activity. Particularly, X-ray absorption fine structure spectroscopy revealed the contraction and expansion of Cu-O and Fe-O bonds, respectively, which were responsible for the activation of the surface Olatt. A mechanistic study revealed that toluene can be oxidized by rapid dehydrogenation of methyl assisted by the highly active surface Olatt and subsequently undergo ring-opening and deep mineralization into CO2 following the Mars-van Krevelen mechanism. This study provided a novel strategy to explore interface-enhanced TM catalysts for efficient surface Olatt activation and VOCs abatement.


Subject(s)
Copper , Oxygen , Toluene
3.
Int J Biol Macromol ; 250: 126143, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37544564

ABSTRACT

Natural polysaccharides are natural biomaterials that have become candidate materials for nano-drug delivery systems due to their excellent biodegradability and biocompatibility. Platinum (Pt) drugs have been widely used in the clinical therapy for various solid tumors. However, their extensive systemic toxicity and the drug resistance acquired by cancer cells limit the applications of platinum drugs. Modern nanobiotechnology provides the possibility for targeted delivery of platinum drugs to the tumor site, thereby minimizing toxicity and optimizing the efficacies of the drugs. In recent years, numerous natural polysaccharide-platinum nanomedicine delivery carriers have been developed, such as nanomicelles, nanospheres, nanogels, etc. Herein, we provide an overview on the construction and drug release of natural polysaccharide-Pt nanomedicines in recent years. Current challenges and future prospectives in this field are also put forward. In general, combining with irradiation and tumor microenvironment provides a significant research direction for the construction of natural polysaccharide-platinum nanomedicines and the release of responsive drugs in the future.

4.
Carbohydr Polym ; 315: 120997, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37230639

ABSTRACT

Platinum anticancer drugs have been explored and developed in recent years to reduce systematic toxicities and resist drug resistance. Polysaccharides derived from nature have abundant structures as well as pharmacological activities. The review provides insights on the design, synthesis, characterization and associating therapeutic application of platinum complexes with polysaccharides that are classified by electronic charge. The complexes give birth to multifunctional properties with enhanced drug accumulation, improved tumor selectivity and achieved synergistic antitumor effect in cancer therapy. Several techniques developing polysaccharides-based carriers newly are also discussed. Moreover, the lasted immunoregulatory activities of innate immune reactions triggered by polysaccharides are summarized. Finally, we discuss the current shortcomings and outline potential strategies for improving platinum-based personalized cancer treatment. Using platinum-polysaccharides complexes for improving the immunotherapy efficiency represents a promising framework in future.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Platinum/chemistry , Precision Medicine , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry
5.
Sci Adv ; 5(6): eaaw5075, 2019 06.
Article in English | MEDLINE | ID: mdl-31249871

ABSTRACT

Lymphangiogenesis is associated with chronic kidney disease (CKD) and occurs following kidney transplant. Here, we demonstrate that expanding lymphatic vessels (LVs) in kidneys and corresponding renal draining lymph nodes (RDLNs) play critical roles in promoting intrarenal inflammation and fibrosis following renal injury. Our studies show that lymphangiogenesis in the kidney and RDLN is driven by proliferation of preexisting lymphatic endothelium expressing the essential C-C chemokine ligand 21 (CCL21). New injury-induced LVs also express CCL21, stimulating recruitment of more CCR7+ dendritic cells (DCs) and lymphocytes into both RDLNs and spleen, resulting in a systemic lymphocyte expansion. Injury-induced intrarenal inflammation and fibrosis could be attenuated by blocking the recruitment of CCR7+ cells into RDLN and spleen or inhibiting lymphangiogenesis. Elucidating the role of lymphangiogenesis in promoting intrarenal inflammation and fibrosis provides a key insight that can facilitate the development of novel therapeutic strategies to prevent progression of CKD-associated fibrosis.


Subject(s)
Fibrosis/pathology , Inflammation/pathology , Kidney Diseases/pathology , Kidney/pathology , Lymph Nodes/pathology , Lymphangiogenesis/physiology , Animals , Chemokine CCL21/metabolism , Dendritic Cells/metabolism , Dendritic Cells/pathology , Fibrosis/metabolism , Inflammation/metabolism , Kidney/metabolism , Kidney Diseases/metabolism , Lymph Nodes/metabolism , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology , Lymphocytes/metabolism , Lymphocytes/pathology , Mice , Mice, Inbred C57BL
6.
Histopathology ; 74(5): 744-758, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30520136

ABSTRACT

BACKGROUND AND AIMS: In this observational cohort study, we assessed the prognostic value of DC-SIGN+ cells in the pathogenesis and progression of IgA nephropathy (IgAN). METHODS AND RESULTS: A total of 139 adult IgAN patients were enrolled into this study from June 2009 to June 2010. We characterised DC-SIGN+ cells by immunohistochemistry or immunofluorescence in renal biopsy tissue. Correlations between the DC-SIGN, intercellular adhesion molecule 3 (ICAM-3), CD4 and CD8 were evaluated. Patients were classified into the DC-SIGNhigh and DC-SIGNlow groups. Depending on an average of 100-month follow-up, the predictive value of DC-SIGN+ cells in IgAN progression was analysed. DC-SIGN+ cells were found frequently in IgAN kidneys while rarely observed in normal kidneys, and almost all DC-SIGN+ cells expressed MHC-II. We also found that DC-SIGN+ cells were adjacent to ICAM-3-positive CD4+ and CD8+ lymphocytes. The density of DC-SIGN+ cells was positively and linearly correlated with the density of ICAM-3+ cells, CD4+ cells and CD8+ cells in renal biopsy tissues. In the DC-SIGNhigh group, the degree of renal lesion and inflammatory cell infiltration was more severe compared to the DC-SIGNlow group. Patients in the DC-SIGNhigh group also had increased incidences of deteriorating renal function during the follow up compared to patients in the DC-SIGNlow group. CONCLUSIONS: DC-SIGN+ cells probably served as a potential contributor to exacerbate local inflammatory response. The density of DC-SIGN+ cells was associated with the severity of renal lesions of the patients. High renal DC-SIGN+ cell density might be used as a predictor of poor prognosis in patients with IgAN.


Subject(s)
Cell Adhesion Molecules/metabolism , Dendritic Cells/pathology , Glomerulonephritis, IGA/pathology , Lectins, C-Type/metabolism , Receptors, Cell Surface/metabolism , Adult , Antigens, CD/biosynthesis , Biopsy , Cell Adhesion Molecules/biosynthesis , Cell Count , China , Dendritic Cells/metabolism , Disease Progression , Female , Follow-Up Studies , Glomerulonephritis, IGA/mortality , Glomerulonephritis, IGA/therapy , Histocompatibility Antigens Class II/biosynthesis , Hospitals, University , Humans , Inflammation/pathology , Kaplan-Meier Estimate , Kidney/cytology , Kidney/pathology , Linear Models , Male , Prognosis , Proportional Hazards Models , Prospective Studies , Renal Replacement Therapy , Retrospective Studies , Risk Factors , Survival Rate , T-Lymphocytes/metabolism
7.
Am J Transl Res ; 10(7): 2184-2194, 2018.
Article in English | MEDLINE | ID: mdl-30093955

ABSTRACT

Tamoxifen is used to activate tamoxifen-dependent Cre recombinase (CreER) to generate time- and tissue-specific genetically mutant mice. However, tamoxifen is also an active estrogen analogue that binds with higher affinity to estrogen receptors and exhibits anti-apoptosis, anti-inflammation, and antifibrotic properties. Renal ischemia reperfusion (I/R) injury is characterized by increased apoptosis and inflammation, so optimal utility of tamoxifen-inducible CreER genetic systems in I/R model is important. The purpose of this study was to optimize the tamoxifen dose and evaluate its safety and tolerability in the development of mouse I/R injury. Seven-week-old C57/B6 mice were subjected to moderate reversible unilateral I/R and then injected intraperitoneally daily for 5 days with tamoxifen at doses of 50, 100, or 200 mg/kg/day. Regardless of the time of sacrifice, at 5 day or 28 day after I/R injury, there were no differences in pathological damage, apoptosis, inflammation, or the extent of fibrosis between untreated and treated mice from the time point of acute kidney injury (AKI) to subsequently chronic kidney disease. Data above indicated that tamoxifen with a dose among 0 to 200 mg/kg/day was safe and tolerable for mice, without influencing I/R induced kidney injury in mice. The results suggest that tamoxifen-inducible CreER genetic systems can be safely used in the mouse I/R model.

8.
Oncotarget ; 8(30): 49574-49591, 2017 Jul 25.
Article in English | MEDLINE | ID: mdl-28484095

ABSTRACT

Cancer as a large group of complex diseases is believed to result from the interactions of numerous genetic and environmental factors but may develop in people without any known genetic or environmental risks, suggesting the existence of other powerful factors to influence the carcinogenesis process. Much attention has been focused recently on particular members of the intestinal microbiota for their potential roles in promoting carcinogenesis. Here we report the identification and characterization of intestinal bacteria that exhibited potent anti-malignancy activities on a broad range of solid cancers and leukemia. We collected fecal specimens from healthy individuals of different age groups (preschool children and university students), inspected their effects on cancer cells, and obtained bacteria with potent anti-malignancy activities. The bacteria mostly belonged to Actinobacteria but also included lineages of other phyla such as Proteobacteria and Firmicutes. In animal cancer models, sterile culture supernatant from the bacteria highly effectively inhibited tumor growth. Remarkably, intra-tumor administration of the bacterial products prevented metastasis and even cleared cancer cells at remote locations from the tumor site. This work demonstrates the prevalent existence of potent malignancy-killers in the human intestinal microbiota, which may routinely clear malignant cells from the body before they form cancers.


Subject(s)
Gastrointestinal Microbiome , Neoplasms/etiology , Adolescent , Adult , Animals , Bacteria/classification , Bacteria/genetics , Bacterial Physiological Phenomena , Cell Survival , Child , Child, Preschool , Disease Models, Animal , Feces/microbiology , Female , Gas Chromatography-Mass Spectrometry , HeLa Cells , Humans , Male , Metagenome , Metagenomics/methods , Mice , Neoplasms/pathology , Phylogeny , RNA, Ribosomal, 16S/genetics , Young Adult
9.
PLoS One ; 12(3): e0172490, 2017.
Article in English | MEDLINE | ID: mdl-28267753

ABSTRACT

Flows (Qa) of arteriovenous fistula (AVF) impact the dialysis adequacy in hemodialysis (HD) patients. However, data for different access flow levels on outcomes related to long-term dialysis patients, especially in Chinese patients, are limited. Herein, we performed an ambispective, mono-centric cohort study investigating the association between the AVF flows and inflammation, cardiovascular events and deaths in Chinese hemodialysis patients bearing a radio-cephalic fistula (AVF) from 2009 to 2015. Twenty-three patients (35.9%) developed at least one episode of cardiovascular disease (CVD) in two years after AVF creation. AVF Qa, IL-6 and hsCRP were significantly higher in patients with CVD than in patients without CVD. Multi-factorial binary logistic regression analysis found that the independent and strongest risk factor for CVD in HD patients was serum IL-6, which showed a positive association with AVF Qa levels in patients. Therefore, the linkage between AVF Qa tertiles and adverse clinical outcomes (cardiovascular events and mortality) was examined over a median follow-up of five years. IL-6 was significantly increased in the high AVF Qa (>1027.13 ml/min) group. Patients with median AVF Qa showed the lowest morbidity and mortality of CVD according to the AVF Qa tertiles, whereas higher Qa was associated with a higher risk of CVD, and lower AVF Qa (600 ml/min ≤AVF Qa <821.12 ml/min) had a higher risk of non-CVD death. Therefore, keeping the AVF Qa at an optimal level (821.12 to 1027.13 ml/min) would benefit HD patients, improve long-term clinical outcomes and lower AVF-induced inflammation.


Subject(s)
Arteriovenous Fistula/physiopathology , Hemodynamics , Interleukin-6/blood , Regional Blood Flow , Renal Dialysis/mortality , Biomarkers , Cardiovascular Diseases/blood , Cardiovascular Diseases/etiology , Cardiovascular Diseases/mortality , Cohort Studies , Cytokines/blood , Female , Humans , Inflammation Mediators/blood , Male , Morbidity , Renal Dialysis/adverse effects , Renal Dialysis/statistics & numerical data , Risk Factors , Survival Analysis
10.
PLoS One ; 11(2): e0149926, 2016.
Article in English | MEDLINE | ID: mdl-26900858

ABSTRACT

AMD3100 is a small molecule inhibitor of chemokine receptor type 4 (CXCR4), which is located in the cell membranes of CD34+ cells and a variety of inflammatory cells and has been reported to reduce organ fibrosis in the lung, liver and myocardium. However, the effect of AMD3100 on renal fibrosis is unknown. This study investigated the impact of AMD3100 on renal fibrosis. C57bl/6 mice were subjected to unilateral ureteral obstruction (UUO) surgery with or without AMD3100 administration. Tubular injury, collagen deposition and fibrosis were detected and analyzed by histological staining, immunocytochemistry and Western Blot. Bone marrow derived pro-angiogenic cells (CD45+, CD34+ and CD309+ cells) and capillary density (CD31+) were measured by flow cytometry (FACS) and immunofluorescence (IF). Inflammatory cells, chemotactic factors and T cell proliferation were characterized. We found that AMD3100 treatment did not alleviate renal fibrosis but, rather, increased tissue damage and renal fibrosis. Continuous AMD3100 administration did not improve bone marrow derived pro-angiogenic cells mobilization but, rather, inhibited the migration of bone marrow derived pro-angiogenic cells into the fibrotic kidney. Additionally, T cell infiltration was significantly increased in AMD3100-treated kidneys compared to un-treated kidneys. Thus, treatment of UUO mice with AMD3100 led to an increase in T cell infiltration, suggesting that AMD3100 aggravated renal fibrosis.


Subject(s)
Bone Marrow/pathology , Heterocyclic Compounds/pharmacology , Inflammation/pathology , Kidney/pathology , Neovascularization, Physiologic/drug effects , T-Lymphocytes/pathology , Animals , Benzylamines , CD3 Complex/metabolism , Cell Proliferation/drug effects , Chemotaxis/drug effects , Collagen Type IV/metabolism , Cyclams , Cytokines/metabolism , Fibrosis , Hypoxia/complications , Hypoxia/pathology , Kidney Tubules/drug effects , Kidney Tubules/pathology , Male , Mice, Inbred C57BL , Receptor, Platelet-Derived Growth Factor beta/metabolism , T-Lymphocytes/drug effects , Ureteral Obstruction/complications
11.
Int J Mol Sci ; 16(9): 22621-35, 2015 Sep 18.
Article in English | MEDLINE | ID: mdl-26393580

ABSTRACT

Biliverdin reductase A is an enzyme, with serine/threonine/tyrosine kinase activation, converting biliverdin (BV) to bilirubin (BR) in heme degradation pathway. It has been reported to have anti-inflammatory and antioxidant effect in monocytes and human glioblastoma. However, the function of BVRA in polarized macrophage was unknown. This study aimed to investigate the effect of BVRA on macrophage activation and polarization in injured renal microenvironment. Classically activated macrophages (M1macrophages) and alternative activation of macrophages (M2 macrophages) polarization of murine bone marrow derived macrophage was induced by GM-CSF and M-CSF. M1 polarization was associated with a significant down-regulation of BVRA and Interleukin-10 (IL-10), and increased secretion of TNF-α. We also found IL-10 expression was increased in BVRA over-expressed macrophages, while it decreased in BVRA knockdown macrophages. In contrast, BVRA over-expressed or knockdown macrophages had no effect on TNF-α expression level, indicating BVRA mediated IL-10 expression in macrophages. Furthermore, we observed in macrophages infected with recombinant adenoviruses BVRA gene, which BVRA over-expressed enhanced both INOS and ARG-1 mRNA expression, resulting in a specific macrophage phenotype. Through in vivo study, we found BVRA positive macrophages largely existed in mice renal ischemia perfusion injury. With the treatment of the regular cytokines GM-CSF, M-CSF or LPS, excreted in the injured renal microenvironment, IL-10 secretion was significantly increased in BVRA over-expressed macrophages. In conclusion, the BVRA positive macrophage is a source of anti-inflammatory cytokine IL-10 in injured kidney, which may provide a potential target for treatment of kidney disease.


Subject(s)
Gene Expression Regulation , Interleukin-10/immunology , Kidney/pathology , Macrophages/immunology , Oxidoreductases Acting on CH-CH Group Donors/immunology , Renal Insufficiency/pathology , Reperfusion Injury/pathology , Animals , Cell Line , Cell Polarity , Cells, Cultured , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Humans , Interleukin-10/genetics , Kidney/immunology , Kidney/metabolism , Lipopolysaccharides/immunology , Macrophage Activation , Macrophage Colony-Stimulating Factor/immunology , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Oxidoreductases Acting on CH-CH Group Donors/genetics , Renal Insufficiency/genetics , Renal Insufficiency/immunology , Reperfusion Injury/genetics , Reperfusion Injury/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...