Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Oncol Rep ; 51(5)2024 May.
Article in English | MEDLINE | ID: mdl-38456515

ABSTRACT

After the publication of the article, an interested reader drew to the authors' attention that, in the western blots shown in Fig. 5C and D, a pair of data panels were inadvertently duplicated comparing between panels (C) and (D); in addition, the cell migration data shown in Fig. 7F on p. 1852 were selected incorrectly. The authors have examined their original data, and realize that these errors arose inadvertently as a consequence of their mishandling of their data. The revised versions of Figs. 5 and 7, featuring the corrected data for the caspase-8 experiment in Fig. 5C and alternative data for the cell migration assay experiments in Fig. 7F, are shown on the next two pages. The revised data shown for these Figures do not affect the overall conclusions reported in the paper. All the authors agree to the publication of this corrigendum, and are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this. Furthermore, the authors apologize to the readership for any inconvenience caused. [Oncology Reports 40: 1843-1854, 2018; DOI: 10.3892/or.2018.6593].

2.
Int J Nanomedicine ; 19: 2755-2772, 2024.
Article in English | MEDLINE | ID: mdl-38525008

ABSTRACT

Purpose: The drug resistance and low response rates of immunotherapy limit its application. This study aimed to construct a new nanoparticle (CaCO3-polydopamine-polyethylenimine, CPP) to effectively deliver interleukin-12 (IL-12) and suppress cancer progress through immunotherapy. Methods: The size distribution of CPP and its zeta potential were measured using a Malvern Zetasizer Nano-ZS90. The morphology and electrophoresis tentative delay of CPP were analyzed using a JEM-1400 transmission electron microscope and an ultraviolet spectrophotometer, respectively. Cell proliferation was analyzed by MTT assay. Proteins were analyzed by Western blot. IL-12 and HMGB1 levels were estimated by ELISA kits. Live/dead staining assay was performed using a Calcein-AM/PI kit. ATP production was detected using an ATP assay kit. The xenografts in vivo were estimated in C57BL/6 mice. The levels of CD80+/CD86+, CD3+/CD4+ and CD3+/CD8+ were analyzed by flow cytometry. Results: CPP could effectively express EGFP or IL-12 and increase ROS levels. Laser treatment promoted CPP-IL-12 induced the number of dead or apoptotic cell. CPP-IL-12 and laser could further enhance CALR levels and extracellular HMGB1 levels and decrease intracellular HMGB1 and ATP levels, indicating that it may induce immunogenic cell death (ICD). The tumors and weights of xenografts in CPP-IL-12 or laser-treated mice were significantly reduced than in controls. The IL-12 expression, the CD80+/CD86+ expression of DC from lymph glands, and the number of CD3+/CD8+T or CD3+/CD4+T cells from the spleen increased in CPP-IL-12-treated or laser-treated xenografts compared with controls. The levels of granzyme B, IFN-γ, and TNF-α in the serum of CPP-IL-12-treated mice increased. Interestingly, CPP-IL-12 treatment in local xenografts in the back of mice could effectively inhibit the growth of the distant untreated tumor. Conclusion: The novel CPP-IL-12 could overexpress IL-12 in melanoma cells and achieve immunotherapy to melanoma through inducing ICD, activating CD4+ T cell, and enhancing the function of tumor-reactive CD8+ T cells.


Subject(s)
HMGB1 Protein , Melanoma , Humans , Mice , Animals , Interleukin-12 , CD8-Positive T-Lymphocytes , Melanoma/therapy , Melanoma/metabolism , HMGB1 Protein/metabolism , Immunogenic Cell Death , Mice, Inbred C57BL , Cell Proliferation , CD4-Positive T-Lymphocytes , Adenosine Triphosphate/metabolism
3.
Commun Biol ; 7(1): 215, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383737

ABSTRACT

Blocking immune checkpoint CD47/SIRPα is a useful strategy to engineer macrophages for cancer immunotherapy. However, the roles of CD47-related noncoding RNA in regulating macrophage phagocytosis for lung cancer therapy remain unclear. This study aims to investigate the effects of long noncoding RNA (lncRNA) on the phagocytosis of macrophage via CD47 and the proliferation of non-small cell lung cancer (NSCLC) via TIPRL. Our results demonstrate that lncRNA KCTD21-AS1 increases in NSCLC tissues and is associated with poor survival of patients. KCTD21-AS1 and its m6A modification by Mettl14 promote NSCLC cell proliferation. miR-519d-5p gain suppresses the proliferation and metastasis of NSCLC cells by regulating CD47 and TIPRL. Through ceRNA with miR-519d-5p, KCTD21-AS1 regulates the expression of CD47 and TIPRL, which further regulates macrophage phagocytosis and cancer cell autophagy. Low miR-519d-5p in patients with NSCLC corresponds with poor survival. High TIPRL or CD47 levels in patients with NSCLC corresponds with poor survival. In conclusion, we demonstrate that KCTD21-AS1 and its m6A modification promote NSCLC cell proliferation, whereas miR-519d-5p inhibits this process by regulating CD47 and TIPRL expression, which further affects macrophage phagocytosis and cell autophagy. This study provides a strategy through miR-519-5p gain or KCTD21-AS1 depletion for NSCLC therapy by regulating CD47 and TIPRL.


Subject(s)
Adenine , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , RNA, Long Noncoding , Humans , Adenine/analogs & derivatives , Autophagy/genetics , Carcinoma, Non-Small-Cell Lung/pathology , CD47 Antigen/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Intracellular Signaling Peptides and Proteins , Lung Neoplasms/pathology , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phagocytosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
4.
Curr Oncol ; 30(11): 9940-9952, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37999142

ABSTRACT

Objective: The purpose of this study was to evaluate the efficacy and safety of programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors for the treatment of metastatic urothelial carcinoma (mUC). Methods: A literature search was conducted of PubMed, EMBASE, and the Cochrane Library and was limited to the English literature. Randomized controlled trials (RCTs) published up to July 2022 were considered for inclusion. The outcomes were progression-free survival (PFS), overall survival (OS), objective response rate (ORR), and grade ≥ 3 treatment-related AEs (TRAE). Subgroup analysis was performed based on the PD-L1 expression status, and the differences between first- and second-line PD-1/PD-L1 inhibitors were estimated. Results: We included five RCTs comprising 3584 patients in the analysis. Compared with chemotherapy alone, the use of PD-1/PD-L1 inhibitors as monotherapy did not significantly prolong OS [hazard ratios (HR), 0.90; 95% CI, 0.81-1.00] or PFS (HR, 1.12; 95% CI, 0.95-1.32). However, the PD-1/PD-L1 inhibitor combined with chemotherapy significantly improved both OS (HR, 0.85; 95% CI, 0.74-0.96) and PFS (HR, 0.80; 95% CI, 0.71-0.90). Additionally, subgroup analysis showed that in mUC with PD-L1 expression ≥ 5%, treatment with the PD-1/PD-L1 inhibitor alone did not reduce the risk of death. Safety analysis showed that the PD-1/PD-L1 inhibitor alone did not significantly increase the incidence rates of grade ≥ 3 TRAEs. Conclusions: The results show that use of the PD-1/PD-L1 inhibitor alone as first-line treatment is similar to chemotherapy in terms of both survival and response rates. However, the PD-1/PD-L1 inhibitor plus chemotherapy has a significant benefit in terms of PFS or OS. Nonetheless, more RCTs are warranted to evaluate efficiency and safety in the combination regimen of chemotherapy and PD-1/PD-L1 inhibitors.


Subject(s)
Carcinoma , Immune Checkpoint Inhibitors , Humans , B7-H1 Antigen , Programmed Cell Death 1 Receptor , Progression-Free Survival
5.
Int J Nanomedicine ; 18: 4381-4402, 2023.
Article in English | MEDLINE | ID: mdl-37551273

ABSTRACT

Introduction: As the special modality of cell death, immunogenic cell death (ICD) could activate immune response. Phototherapy in combination with chemotherapy (CT) is a particularly efficient tumor ICD inducing method that could overcome the defects of monotherapies. Methods: In this study, new dual stimuli-responsive micelles were designed and prepared for imaging-guided mitochondrion-targeted photothermal/photodynamic/CT combination therapy through inducing ICD. A dual-sensitive methoxy-polyethylene glycol-SS-poly(L-γ-glutamylglutamine)-SS-IR780 (mPEG-SS-PGG-SS-IR780) polymer was synthesized by grafting IR780 with biodegradable di-carboxyl PGG as the backbone, and mPEG-SS-PGG-SS-IR780/paclitaxel micelles (mPEG-SS-PGG-SS-IR780/PTXL MCs) were synthesized by encapsulating PTXL in the hydrophobic core. Results: In-vivo and -vitro results demonstrated that the three-mode combination micelles inhibited tumor growth and enhanced the therapeutic efficacy of immunotherapy. The dual stimuli-responsive mPEG-SS-PGG-SS-IR780/PTXL MCs were able to facilitate tumor cell endocytosis of nanoparticles. They were also capable of promoting micelles disintegration and accelerating PTXL release. The mPEG-SS-PGG-SS-IR780/PTXL MCs induced mitochondrial dysfunction by directly targeting the mitochondria, considering the thermo- and reactive oxygen species (ROS) sensitivity of the mitochondria. Furthermore, the mPEG-SS-PGG-SS-IR780/PTXL MCs could play the diagnostic and therapeutic roles via imaging capabilities. Conclusion: In summary, this study formulated a high-efficiency nanoscale platform with great potential in combined therapy for tumors through ICD.


Subject(s)
Micelles , Nanoparticles , Immunogenic Cell Death , Indoles/chemistry , Phototherapy/methods , Nanoparticles/chemistry , Mitochondria , Cell Line, Tumor
6.
ACS Appl Mater Interfaces ; 15(3): 3744-3759, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36630299

ABSTRACT

Inducing immunogenic cell death (ICD) is a critical strategy for enhancing cancer immunotherapy. However, inefficient and risky ICD inducers along with a tumor hypoxia microenvironment seriously limit the immunotherapy efficacy. Non-specific delivery is also responsible for this inefficiency. In this work, we report a drug-free bacteria-derived outer membrane vesicle (OMV)-functionalized Fe3O4-MnO2 (FMO) nanoplatform that realized neutrophil-mediated targeted delivery and photothermally enhanced cancer immunotherapy. In this system, modification of OMVs derived from Escherichia coli enhanced the accumulation of FMO NPs at the tumor tissue through neutrophil-mediated targeted delivery. The FMO NPs underwent reactive decomposition in the tumor site, generating manganese and iron ions that induced ICD and O2 that regulated the tumor hypoxia environment. Moreover, OMVs are rich in pathogen-associated pattern molecules that can overcome the tumor immunosuppressive microenvironment and effectively activate immune cells, thereby enhancing specific immune responses. Photothermal therapy (PTT) caused by MnO2 and Fe3O4 can not only indirectly stimulate systemic immunity by directly destroying tumor cells but also promote the enrichment of neutrophil-equipped nanoparticles by enhancing the inflammatory response at the tumor site. Finally, the proposed multi-modal treatment system with targeted delivery capability realized effective tumor immunotherapy to prevent tumor growth and recurrence.


Subject(s)
Bioengineering , Immunotherapy , Multifunctional Nanoparticles , Neoplasms , Humans , Cell Line, Tumor , Immunotherapy/methods , Multifunctional Nanoparticles/therapeutic use , Neoplasms/therapy , Tumor Microenvironment/immunology , Transport Vesicles/chemistry , Transport Vesicles/immunology , Bacterial Outer Membrane/chemistry , Bacterial Outer Membrane/immunology , Escherichia coli
7.
Int J Pharm ; 631: 122488, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36521638

ABSTRACT

Reduced drug uptake and elevated drug efflux are two major mechanisms in cancer multidrug resistance (MDR). In the present study, a new multistage O2-producing liposome with NAG/R8-dual-ligand and stimuli-responsive dePEGylation was developed to address the abovementioned issues simultaneously. The designed C-NAG-R8-PTXL/MnO2-lip could also achieve magnetic resonance imaging (MRI)-guided synergistic chemodynamic/chemotherapy (CDT/CT). In vitro and in vivo studies showed that C-NAG-R8-PTXL/MnO2-lip enhanced circulation time by PEG and targeted the tumor site. After tumor accumulation, endogenous l-cysteine was administered, and the PEG-attached disulfide bond was broken, resulting in the dissociation of PEG shells. The previously hidden positively charged R8 by different lengths of PEG chains was exposed and mediated efficient internalization. In addition, the oxygen (O2) generated by C-NAG-R8-PTXL/MnO2-lip relieved the hypoxic environment within the tumor, thus reducing the efflux of chemotherapeutic drug. O2 was able to burst liposomes and triggered the release of PTXL. The toxic hydroxyl radical (·OH), which was produced by H2O2 and Mn2+, strengthened CDT/CT. C-NAG-R8-PTXL/MnO2-lip was also used as MRI contrast agent, which blazed the trail to rationally design theranostic agents for tumor imaging.


Subject(s)
Liposomes , Neoplasms , Humans , Liposomes/chemistry , Manganese Compounds/chemistry , Cell Line, Tumor , Hydrogen Peroxide , Oxides/chemistry , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Neoplasms/pathology , Drug Resistance, Multiple , Oxygen , Magnetic Resonance Imaging , Tumor Microenvironment , Theranostic Nanomedicine
8.
Molecules ; 27(19)2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36234689

ABSTRACT

D-limonene (4-isopropenyl-1-methylcyclohexene) is an important compound in several citrus essential oils (such as orange, lemon, tangerine, lime, and grapefruit). It has been used as a flavoring agent and as a food preservative agent, with generally recognized as safe (GRAS) status. D-limonene has been well-studied for its anti-inflammatory, antioxidant, anti-cancer, and antibacterial properties. The antibacterial activity of D-limonene against food-borne pathogens was investigated in this study by preparing a D-limonene nanoemulsion. The D-limonene solution and nanoemulsion have been prepared in six concentrations, 0.04%, 0.08%, 0.1%, 0.2%, 0.4%, and 0.8% (v/v), respectively, and the antibacterial activity was tested against four food-borne pathogens (Staphylococcus aureus, Listeria monocytogenes, Salmonella enterica, and Escherichia coli). The results showed that the D-limonene nanoemulsion had good nanoscale and overall particle size uniformity, and its particle size was about 3~5 nm. It has been found that the D-limonene solution and nanoemulsion have a minimal inhibitory concentration of 0.336 mg/mL, and that they could inhibit the growth of microorganisms efficiently. The data indicate that the D-limonene nanoemulsion has more antibacterial ability against microorganisms than the D-limonene essential oil. After bananas are treated with 1.0% and 1.5% D-limonene nanoemulsion coatings, the water loss of the bananas during storage and the percentage of weight loss are reduced, which can inhibit the activity of pectinase. The application of a biocoating provides a good degree of antibacterial activity and air and moisture barrier properties, which help with extending the shelf life of bananas.


Subject(s)
Citrus , Edible Films , Musa , Oils, Volatile , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Cyclohexenes/pharmacology , Escherichia coli , Flavoring Agents/pharmacology , Food Preservatives/pharmacology , Limonene/pharmacology , Oils, Volatile/pharmacology , Polygalacturonase , Terpenes/pharmacology , Water/pharmacology
9.
J Biomed Nanotechnol ; 18(3): 763-777, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35715902

ABSTRACT

Although the development of safe and efficient cancer therapeutic agents is essential, this process remains challenging. In this study, a mitochondria-targeted degradable nanoplatform (PDA-MnO2-IR780) for synergistic photothermal, photodynamic, and sonodynamic tumor treatment was investigated. PDA-MnO2-IR780 exhibits superior photothermal properties owing to the integration of polydopamine, MnO2, and IR780. IR780, a photosensitizer and sonosensitizer, was used for photodynamic therapy and sonodynamic therapy. When PDA-MnO2-IR780 was delivered to the tumor site, MnO2 was decomposed by hydrogen peroxide, producing Mn2+ and oxygen. Meanwhile, alleviating tumor hypoxia promoted the production of reactive oxygen species during photodynamic therapy and sonodynamic therapy. Moreover, large amounts of reactive oxygen species could reduce the expression of heat shock proteins and increase the heat sensitivity of tumor cells, thereby improving the photothermal treatment effect. In turn, hyperthermia caused by photothermal therapy accelerated the production of reactive oxygen species in photodynamic therapy. IR780 selectively accumulation in mitochondria also promoted tumor apoptosis. In this system, the mutual promotion of photothermal therapy and photodynamic therapy/sonodynamic therapy had an enhanced therapeutic effect. Moreover, the responsive degradable characteristic of PDA-MnO2-IR780 in the tumor microenvironment ensured excellent biological safety. These results reveal a great potential of PDA-MnO2-IR780 for safe and highly-efficiency synergistic therapy for cancer.


Subject(s)
Nanocomposites , Nanoparticles , Photochemotherapy , Cell Line, Tumor , Lasers , Manganese Compounds/metabolism , Mitochondria/metabolism , Nanocomposites/therapeutic use , Nanoparticles/therapeutic use , Oxides , Photochemotherapy/methods , Reactive Oxygen Species
10.
Nat Commun ; 13(1): 2939, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35618720

ABSTRACT

We initiate the Westlake BioBank for Chinese (WBBC) pilot project with 4,535 whole-genome sequencing (WGS) individuals and 5,841 high-density genotyping individuals, and identify 81.5 million SNPs and INDELs, of which 38.5% are absent in dbSNP Build 151. We provide a population-specific reference panel and an online imputation server ( https://wbbc.westlake.edu.cn/ ) which could yield substantial improvement of imputation performance in Chinese population, especially for low-frequency and rare variants. By analyzing the singleton density of the WGS data, we find selection signatures in SNX29, DNAH1 and WDR1 genes, and the derived alleles of the alcohol metabolism genes (ADH1A and ADH1B) emerge around 7,000 years ago and tend to be more common from 4,000 years ago in East Asia. Genetic evidence supports the corresponding geographical boundaries of the Qinling-Huaihe Line and Nanling Mountains, which separate the Han Chinese into subgroups, and we reveal that North Han was more homogeneous than South Han.


Subject(s)
Asian People , Biological Specimen Banks , Asian People/genetics , China , Genomics , Humans , Pilot Projects
11.
J Biomed Nanotechnol ; 18(2): 352-368, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35484752

ABSTRACT

The construction of high-efficiency tumor theranostic platform will be of great interest in the treatment of cancer patients; however, significant challenges are associated with developing such a platform. In this study, we developed high-efficiency nanotheranostic agent based on ferroferric oxide, manganese dioxide, hyaluronic acid and doxorubicin (FMDH-D NPs) for dual targeting and imaging guided synergetic photothermal-enhanced chemodynamic/chemotherapy for cancer, which improved the specific uptake of drugs at tumor site by the dual action of CD44 ligand hyaluronic acid and magnetic nanoparticles guided by magnetic force. Under the acidic microenvironment of cancer cells, FMDH-D could be decomposed into Mn2+ and Fe2+ to generate •OH radicals by triggering a Fenton-like reaction and responsively releasing doxorubicin to kill cancer cells. Meanwhile, alleviating tumor hypoxia improved the efficacy of chemotherapy in tumors. The photothermal properties of FMDH generated high temperatures, which further accelerated the generation of reactive oxygen species, and enhanced effects of chemodynamic therapy. Furthermore, FMDH-D NPs proved to be excellent T1/T2-weighted magnetic resonance imaging contrast agents for monitoring the tumor location. These results confirmed the considerable potential of FMDH-D NPs in a highly efficient synergistic therapy platform for cancer treatment.


Subject(s)
Manganese Compounds , Neoplasms , Doxorubicin/pharmacology , Humans , Hyaluronic Acid , Magnetic Resonance Imaging , Manganese Compounds/pharmacology , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Oxides , Tumor Microenvironment
12.
Thorac Cancer ; 13(6): 832-843, 2022 03.
Article in English | MEDLINE | ID: mdl-35076182

ABSTRACT

BACKGROUND: MicroRNAs (miRNAs) function as potential diagnostic biomarkers in various cancers. This study aimed to evaluate the roles of miR-205-5p in lung cancer progression and diagnosis. MATERIALS AND METHODS: MiR-205-5p was detected by quantitative real-time PCR. The effect of miR-205-5p on cell proliferation and metastasis was estimated by MTT and flow cytometry. The expression of TP53INP1 and related genes was analyzed by immunoblotting. The diagnostic value of miR-205-5p was analyzed using receiver operating characteristic (ROC) curve analysis, sensitivity, and specificity. RESULTS: The miR-205-5p was increased in lung cancer tissues. MiR-205-5p mimics were promoted but its inhibitor suppressed cell proliferation and metastasis compared with control treatment in vitro and in vivo. By regulating the 3' untranslated region, miR-205-5p could negatively regulate TP53INP1 expression, which further inhibited the expression of RB1 and P21, but increased that of cyclinD1. Moreover, the serum miR-205-5p levels of patients with lung cancer were significantly higher than those of normal controls, and they were correlated with patients' gender, drinking status, and clinical stage. The area under the ROC curve of serum miR-205-5p in the diagnosis of non-small-cell lung cancer was 0.8250, respectively. The finding supported its possession of high diagnostic efficiency for lung cancer. CONCLUSIONS: MiR-205-5p promoted lung cancer cell proliferation and metastasis by negatively regulating the novel target TP53INP1, which further affected the expression of P21, RB1, and cyclin D1. Serum miR-205-5p is a novel and valuable biomarker for lung cancer diagnosis.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , 3' Untranslated Regions , Carcinoma, Non-Small-Cell Lung/pathology , Carrier Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Heat-Shock Proteins/genetics , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , MicroRNAs/metabolism
13.
Cell Death Dis ; 12(8): 735, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34301920

ABSTRACT

Non-coding RNAs (ncRNAs) involve in diverse biological processes by post-transcriptional regulation of gene expression. Emerging evidence shows that miRNA-4293 plays a significant role in the development of non-small cell lung cancer. However, the oncogenic functions of miR-4293 have not been studied. Our results demonstrated that miR-4293 expression is markedly enhanced in lung carcinoma tissue and cells. Moreover, miR-4293 promotes tumor cell proliferation and metastasis but suppresses apoptosis. Mechanistic investigations identified mRNA-decapping enzyme 2 (DCP2) as a target of miR-4293 and its expression is suppressed by miR-4293. DCP2 can directly or indirectly bind to WFDC21P and downregulates its expression. Consequently, miR-4293 can further promote WFDC21P expression by regulating DCP2. With a positive correlation to miR-4293 expression, WFDC21P also plays an oncogenic role in lung carcinoma. Furthermore, knockdown of WFDC21P results in functional attenuation of miR-4293 on tumor promotion. In vivo xenograft growth is also promoted by both miR-4293 and WFDC21P. Overall, our results establish oncogenic roles for both miR-4293 and WFDC21P and demonstrate that interactions between miRNAs and lncRNAs through DCP2 are important in the regulation of carcinoma pathogenesis. These results provided a valuable theoretical basis for the discovery of lung carcinoma therapeutic targets and diagnostic markers based on miR-4293 and WFDC21P.


Subject(s)
Gene Expression Regulation, Neoplastic , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Up-Regulation/genetics , Adult , Aged , Animals , Apoptosis/genetics , Base Sequence , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Female , Gene Knockdown Techniques , Humans , Male , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , Middle Aged , Models, Biological , Protein Binding , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , STAT3 Transcription Factor/metabolism
14.
BMJ Open ; 11(6): e045564, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34183340

ABSTRACT

PURPOSE: The Westlake BioBank for Chinese (WBBC) pilot cohort is a population-based prospective study with its major purpose to better understand the effect of genetic and environmental factors on growth and development from adolescents to adults. PARTICIPANTS: A total of 14 726 participants (4751 males and 9975 females) aged 14-25 years were recruited and the baseline survey was carried out from 2017 to 2019. The pilot cohort contains rich range of information regarding of demographics and anthropometric measurements, lifestyle and sleep patterns, clinical and health outcomes. Visit the WBBC website for more information (https://wbbc.westlake.edu.cn/index.html). FINDINGS TO DATE: The mean age of the study samples were 18.6 years for males and 18.5 years for females, respectively. The mean height and weight were 172.9 cm and 65.81 kg for males, and 160.1 cm and 52.85 kg for females. Results indicated that the prevalence of underweight in female was much higher than male, but the prevalence of overweight and obesity in female was lower than male. The mean serum 25(OH)D level in the 14 726 young participants was 22.4±5.3 ng/mL, and male had a higher level of serum 25(OH)D than female, overall, 33.5% of the participants had vitamin D deficiency and even more participants suffered from vitamin D insufficiency (58.2%). The proportion of deficiency in females was much higher than that in males (41.8 vs 16.4%). The issue of underweight and vitamin D deficiency in young people should be paid attention, especially in females. These results reflected the fact that thinness and paler skin are preferred in modern aesthetics of Chinese culture. FUTURE PLANS: WBBC pilot is designed as a prospective cohort study and provides a unique and rich data set analysing health trajectories from adolescents to young adults. WBBC will continue to collect samples with old age.


Subject(s)
Biological Specimen Banks , Vitamin D Deficiency , Adolescent , Body Mass Index , China/epidemiology , Cohort Studies , Cross-Sectional Studies , Female , Humans , Male , Pilot Projects , Prevalence , Prospective Studies , Vitamin D , Young Adult
15.
J Control Release ; 336: 396-409, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34175367

ABSTRACT

The emergence of multidrug resistance (MDR) in malignant tumors is the primary reason for invalid chemotherapy. Antitumor drugs are often adversely affected by the MDR of tumor cells. Treatments using conventional drugs, which have specific drug targets, hardly regulate the complex signaling pathway of MDR cells because of the complex formation mechanism of MDR. However, natural products have positive advantages, such as high efficiency, low toxicity, and ability to target multiple mechanism pathways associated with MDR. Natural products, as MDR reversal agents, synergize with chemotherapeutics and enhance the sensitivity of tumor cells to chemotherapeutics, and the co-delivery of natural products and antitumor drugs with nanocarriers maximizes the synergistic effects against MDR in tumor cells. This review summarizes the molecular mechanisms of MDR, the advantages of natural products combined with chemotherapeutics in offsetting complicated MDR mechanisms, and the types and mechanisms of natural products that are potential MDR reversal modulators. Meanwhile, aiming at the low bioavailability of cocktail combined natural products and chemotherapeutic in vivo, the advantages of nanoplatform-based co-delivery system and recent research developments are illustrated on the basis of our previous research. Finally, prospective horizons are analyzed, which are expected to considerably improve the nano-co-delivery of natural products and chemotherapeutic systems for MDR reversal in cancer.


Subject(s)
Antineoplastic Agents , Biological Products , Neoplasms , Antineoplastic Agents/therapeutic use , Biological Products/therapeutic use , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Humans , Neoplasms/drug therapy , Prospective Studies
16.
Biomater Sci ; 9(10): 3662-3674, 2021 May 18.
Article in English | MEDLINE | ID: mdl-33617619

ABSTRACT

Photodynamic therapy (PDT) has been regarded as a promising strategy for tumor therapy. However, heterogeneous tumor microenvironments severely limit the efficacy of photodynamic therapy. In this work, a multifunctional theranostic platform (MnO2-SiO2-APTES&Ce6 (MSA&C)) was fabricated based on MnO2 nanoflowers, which afforded MRI-guided synergistic therapy incorporating PDT and second near-infrared window (NIR-II) photothermal therapy (PTT). Herein, MnO2 nanoflowers are first proposed as a NIR-II photothermal agent. In the MSA&C system, MnO2 nanoflowers were employed for effective photosensitizer loading, relieving tumor hypoxia, and NIR-II PTT and tumor-specific imaging. The large amount of photosensitizer, reduced tumor hypoxia, and hyperthermia all contributed to the improvement of PDT. The quantity of reactive oxygen species (ROS) generated during PDT in turn down-regulated the expression of heat shock proteins (HSP 70), thereby improving photothermal performance. Positively charged (3-aminopropyl)triethoxysilane (APTES) was used to promote cellular uptake, further improving treatment efficiency. In this system, the MSA&C nanoflowers can not only alleviate tumor hypoxia, but they also obviously induce cell apoptosis under laser irradiation through a ROS- and hyperthermia-mediated mechanism, thereby leading to remarkable tumor growth inhibition. Furthermore, the Mn2+ ions generated during treatment can be explored for MR imaging, and this could be used to finally realize MRI-guided enhanced PDT/PTT.


Subject(s)
Hyperthermia, Induced , Photochemotherapy , Magnetic Resonance Imaging , Manganese Compounds , Oxides , Photosensitizing Agents/therapeutic use , Silicon Dioxide
17.
Asia Pac J Clin Oncol ; 17(2): e3-e9, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32030884

ABSTRACT

HOX transcript antisense intergenic RNA (HOTAIR) is considered a diagnostic biomarker for cancer; however, results of previous studies on HOTAIR are inconsistent. In this meta-analysis, we aimed to investigate the role of HOTAIR in cancer diagnosis. Medline, PubMed, Embase, Ovid, Web of Science and Cochrane databases were searched for relevant literature up to May 2019. Over all, we included 20 studies from 17 articles on the role of HOTAIR in cancer diagnosis (individual diagnosis) and 7 studies from 6 articles on the role of HOTAIR along with other biomarkers in cancer diagnosis (combinative diagnosis). The sensitivity and specificity of HOTAIR-mediated individual diagnosis of cancers were 0.80 (95% confidence interval [CI], 0.74-0.85) and 0.74 (95% CI, 0.66-0.81), respectively. The sensitivity and specificity of HOTAIR-mediated combinative diagnosis of cancer were 0.82 (95% CI, 0.77-0.87) and 0.86 (95% CI, 0.80-0.91), respectively. The areas under the receiver operating characteristic curve for individual and combinative diagnoses was 0.84 (95% CI, 0.81-0.87) and 0.91 (95% CI, 0.88-0.93), respectively, indicating that a combinative diagnosis has a relatively better diagnostic accuracy (z = -2.22, P = 0.01) than individual diagnosis. In conclusion, HOTAIR levels might be a promising biomarker in cancer diagnosis. In addition, using HOTAIR in combination with other biomarkers showed a relatively better diagnostic accuracy than HOTAIR alone.


Subject(s)
Biomarkers, Tumor/metabolism , Gene Expression Regulation, Neoplastic/genetics , Neoplasms/genetics , RNA, Long Noncoding/genetics , Humans
18.
Anticancer Agents Med Chem ; 20(16): 1883-1894, 2020.
Article in English | MEDLINE | ID: mdl-32538735

ABSTRACT

MicroRNAs (miRNAs) are short, non-coding RNA molecules that regulate gene expression by translational repression or deregulation of messenger RNAs. Accumulating evidence suggests that miRNAs play various roles in the development and progression of lung cancers. Although their precise roles in targeted cancer therapy are currently unclear, miRNAs have been shown to affect the sensitivity of tumors to anticancer drugs. A large number of recent studies have demonstrated that some anticancer drugs exerted antitumor activities by affecting the expression of miRNAs and their targeted genes. These studies have elucidated the specific biological mechanism of drugs in tumor suppression, which provides a new idea or basis for their clinical application. In this review, we summarized the therapeutic mechanisms of drugs in lung cancer therapy through their effects on miRNAs and their targeted genes, which highlights the roles of miRNAs as targets in lung cancer therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Lung Neoplasms/drug therapy , MicroRNAs/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MicroRNAs/genetics
19.
Mol Genet Genomic Med ; 8(7): e1299, 2020 07.
Article in English | MEDLINE | ID: mdl-32394637

ABSTRACT

BACKGROUND: Long noncoding (lncRNA) single-nucleotide polymorphisms (SNPs) are associated with the susceptibility to the development of various malignant tumors. The aim of this study was to investigate the roles of HOX transcript antisense intergenic RNA (HOTAIR) and its SNPs in lung cancer. METHODS: Initially, the expression of HOTAIR in different tumors was investigated using the online Gene Expression Profiling Interactive Analysis (GEPIA) resource. Three SNPs (rs920778, rs1899663, and rs4759314) of HOTAIR were identified using the MassArray system. Following this, the relationship between these SNPs and susceptibility to lung cancer was investigated. RESULTS: Expression of HOTAIR was found to increase in a variety of cancers, including nonsmall cell lung cancer (NSCLC). We found that the genotypes of these SNPs (rs920778, rs1899663, and rs4759314) were not significantly associated with lung cancer type, family history, lymph node metastasis, or lung cancer stage. In gender stratification, the results of rs920778 genotypes showed that, compared to genotype AA, the AG (OR = 0.344, 95% CI: 0.133-0.893, p = .028) and AG + GG (OR = 0.378, 95% CI: 0.153-0.932, p = .035) genotypes of rs920778 are protective factors against NSCLC in females. In smoking stratification, compared with AA of rs920778, the genotype AG + GG (OR = 0.507, 95% CI: 0.263-0.975, p = .042) was a protective factor against NSCLC in nonsmoking people. No statistical differences were observed in the classifications of rs1899663 and rs4759314 genotypes. Linkage disequilibrium analysis revealed a high linkage disequilibrium between the rs920778 and rs1899663 (D' = 0.99, r2  = .74), rs920778 and rs4759314 (D' = 0.85, r2  = .13), and rs1899663 and rs4759314 (D' = 0.79, r2  = .00). CONCLUSION: Our study demonstrated that HOTAIR expression increased in NSCLC, and that the genotypes of rs920778 could be useful in the diagnosis and prognosis of lung cancer.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Polymorphism, Single Nucleotide , RNA, Long Noncoding/genetics , Aged , Carcinoma, Non-Small-Cell Lung/pathology , Female , Genetic Predisposition to Disease , Humans , Linkage Disequilibrium , Lung Neoplasms/pathology , Male , Middle Aged , Prognosis , RNA, Long Noncoding/metabolism
20.
Mol Med Rep ; 20(4): 3355-3362, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31432162

ABSTRACT

MicroRNAs (miRNAs/miRs) serve important roles in the chemotherapeutic effect of anticancer drugs. To investigate the roles of miRNAs in cisplatin­induced suppression of lung adenocarcinoma cell proliferation, A549 cells were treated with different concentrations of cisplatin. An MTT assay demonstrated that cisplatin inhibited A549 cell proliferation in a dose­dependent manner. Cisplatin induced cell apoptosis and inhibited cell migration by increasing the levels of miR­93, miR­26a and miR­26b. Furthermore, as an upstream factor, miR­93 was proposed to regulate cyclin D2 expression in miR­93­transfected A549 cells. Cisplatin also induced Bcl­2­associated X protein expression, and decreased that of Bcl­2 and c­Myc in lung adenocarcinoma cells. In vivo analysis further supported that cisplatin inhibited lung adenocarcinoma cell growth by regulating cyclin D2 and miR­93 expression. In conclusion, our findings demonstrated that cisplatin could effectively inhibit lung adenocarcinoma cell proliferation by decreasing cyclin D2 expression via miR­93.


Subject(s)
Adenocarcinoma of Lung/metabolism , Cisplatin/pharmacology , Cyclin D2/biosynthesis , Gene Expression Regulation, Neoplastic/drug effects , Lung Neoplasms/metabolism , MicroRNAs/biosynthesis , Neoplasm Proteins/biosynthesis , RNA, Neoplasm/biosynthesis , Up-Regulation/drug effects , A549 Cells , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/pathology , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...