Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38541405

ABSTRACT

In this study, asymmetric Al2O3-SiO2 Janus nanoparticles with a dumbbell-like structure were synthesized by a facile chemical process in the aqueous phase. Prior to synthesis, Al2O3 nanoparticles in hydrosol were amino-modified using 3-aminopropyl triethoxysilane (KH550) and then carboxyl acid-functionalized using a ring-opening reaction of the amine functions with succinic anhydride, imparting unique anionic properties to the Al2O3 end. SiO2 nanoparticles were rendered hydrophobic through modification with hexamethyldisilazane (HMDS) and further functionalized with 3-chloropropyl triethoxysilane (KH230). The two nanoparticle hydrosols were then mixed, and the asymmetric Al2O3-SiO2 Janus nanoparticles were synthesized via the reaction between the -NH2 and -CH2Cl groups. The prepared Janus nanoparticles were primarily characterized by dynamic light scattering (DLS), Zeta potential (ZP), and transmission electron microscopy (TEM). The results indicated that about 90% of the modified Al2O3 and SiO2 nanoparticles were covalently coupled in a one-to-one manner to form the dominant dumbbell-like structure. These Janus nanoparticles exhibit amphiphilic properties, making them highly promising surfactants for emulsifying oil-water mixtures.

2.
Polymers (Basel) ; 15(4)2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36850217

ABSTRACT

In order to study the matching relationship between polymer(HPAM) molecular weight and reservoir permeability, in this paper, the injection performance of polymers with different molecular weights in rock cores with different permeability is studied. Using nuclear magnetic resonance technology combined with conventional core displacement equipment, the change law of the displacement process was analyzed from three aspects of nuclear magnetic resonance T2 spectrum, core layering, and imaging. Finally, the fluidity of the polymer solution in the core was analyzed by injection pressure control features. The experimental results show that the polymer solution with a molecular weight of 25 million has the best retention effect in the core flooding experiment and can stay in the dominant channel of the core for a long time to control the water flooding mobility. In rocks with a permeability of 500, 1000, and 2000 mD, subsequent water flooding can expand the swept volume by about 25% compared with polymer flooding. This method can effectively establish the adaptability matching relationship between the polymer molecular weight and the reservoir permeability.

3.
ACS Omega ; 6(35): 23007, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34514270

ABSTRACT

[This corrects the article DOI: 10.1021/acsomega.1c02095.].

4.
ACS Omega ; 6(32): 20833-20845, 2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34423191

ABSTRACT

The preparation and classification of nanocellulose are briefly introduced, and the modification of nanocellulose and the application of modified nanocellulose in oilfield chemistry are reviewed. The principles and methods of surface modification, including surface adsorption, oxidation, acetylation, silanization, etherification, and polymer grafting, are summarized. Meanwhile, this paper focuses on the application of nanocellulose research progress in drilling fluid, enhanced oil recovery, and oilfield sewage treatment. In addition, the application issues and natural advantages of nanocellulose are analyzed, and suggestions and ideas on how to expand its application are put forward. Finally, the development and potential application of nanocellulose in oilfield chemistry are proposed.

5.
Environ Sci Technol ; 53(5): 2500-2508, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30741539

ABSTRACT

The preharvest drainage of rice paddy fields during the grain filling stage can result in a substantial mobilization of Cd in soil and, consequently, elevated grain Cd concentration. However, the processes controlling the mobilization of Cd remains poorly understood. Using 12 field-contaminated paddy soils, we investigated the factors controlling the temporal changes in Cd solubility in paddy soils that were incubated anaerobically for 40 d followed by a 20 d oxidation period. Soluble and extractable Cd concentrations decreased rapidly upon flooding but increased during the oxidation phase, with Cd solubility (aqueous Cd/soil Cd) largely depending upon porewater pH. Furthermore, inhibiting sulfate reduction or inhibiting oxidation dissolution of Cd-sulfides had little or no effect on the mobilization of Cd in the subsequent oxidation phase. Both sequential extraction and X-ray absorption spectroscopy (XAS) analyses revealed that changes in Cd solubility were largely dependent upon the transformation of Cd between the Fe-Mn (oxyhydro)oxide fraction and exchangeable fraction. Mobilization of Cd upon soil drainage was caused by a decrease in soil pH resulting in the release of Cd from Fe-Mn (oxyhydro)oxides. Taken together, Fe-Mn (oxyhydro)oxides play a critical (and prevalent) role in controlling the mobilization of Cd upon soil drainage in paddy systems.


Subject(s)
Oryza , Soil Pollutants , Cadmium , Iron , Manganese , Oxides , Soil , Sulfides
6.
Angew Chem Int Ed Engl ; 57(36): 11752-11757, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-29987910

ABSTRACT

Dynamically engineering the interfacial interaction of nanoparticles has emerged as a new approach for bottom-up fabrication of smart systems to tailor molecular diffusion and controlled release. Janus zwitterionic nanoplates are reported that can be switched between a locked and unlocked state at interfaces upon changing surface charge, allowing manipulation of interfacial properties in a fast, flexible, and switchable manner. Combining experimental and modeling studies, an unambiguous correlation is established among the electrostatic energy, the interface geometry, and the interfacial jamming states. As a proof-of-concept, the well-controlled interfacial jamming of nanoplates enabled the switchable molecular diffusion through liquid-liquid interfaces, confirming the feasibility of using nanoparticle-based surfactants for advanced controlled release.

7.
ACS Appl Mater Interfaces ; 10(26): 22793-22800, 2018 Jul 05.
Article in English | MEDLINE | ID: mdl-29893541

ABSTRACT

We demonstrate a facile route to in situ growth of lyotropic zirconium phosphate (ZrP) nanoplates on textiles via an interfacial crystal growing process. The as-prepared hybrid membrane shows a hierarchical architecture of textile fibers (porous platform for fluid transport), ZrP nanoplatelets (layered scaffolds for chemical barriers), and octadecylamine (organic species for superhydrophobic functionalization). Interestingly, such a hybrid membrane is able to separate the oily wastewater with a high separation efficiency of 99.9%, even at in harsh environments. After being chemically etched, the hybrid membrane is able to restore its hydrophobicity autonomously and repeatedly, owing to the hierarchical structure that enables facile loading of healing agent. We anticipate that the concept of implanting superhydrophobic self-healing features in anisotropic structure of lyotropic nanoparticles will open up new opportunities for developing advanced multifunctional materials for wastewater treatment, fuel purification, and oil spill mitigation.

8.
J Phys Chem B ; 122(6): 1905-1918, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29337552

ABSTRACT

The detachment process of an oil molecular layer situated above a horizontal substrate was often described by a three-stage process. In this mechanism, the penetration and diffusion of water molecules between the oil phase and the substrate was proposed to be a crucial step to aid in removal of oil layer/drops from substrate. In this work, the detachment process of a two-dimensional alkane molecule layer from a silica surface in aqueous surfactant solutions is studied by means of molecular dynamics (MD) simulations. By tuning the polarity of model silica surfaces, as well as considering the different types of surfactant molecules and the water flow effects, more details about the formation of water molecular channel and the expansion processes are elucidated. It is found that for both ionic and nonionic type surfactant solutions, the perturbation of surfactant molecules on the two-dimensional oil molecule layer facilitates the injection and diffusion of water molecules between the oil layer and silica substrate. However, the water channel formation and expansion speed is strongly affected by the substrate polarity and properties of surfactant molecules. First, only for the silica surface with relative stronger polarity, the formation of water molecular channel is observed. Second, the expansion speed of the water molecular channel upon the ionic surfactant (dodecyl trimethylammonium bromide, DTAB and sodium dodecyl benzenesulfonate, SDBS) flooding is more rapidly than the nonionic surfactant system (octylphenol polyoxyethylene(10) ether, OP-10). Third, the water flow speed may also affect the injection and diffusion of water molecules. These simulation results indicate that the water molecular channel formation process is affected by multiple factors. The synergistic effects of perturbation of surfactant molecules and the electrostatic interactions between silica substrate and water molecules are two key factors aiding in the injection and diffusion of water molecules and helpful for the oil detachment from silica substrate.

9.
RSC Adv ; 8(20): 11134-11144, 2018 Mar 16.
Article in English | MEDLINE | ID: mdl-35541563

ABSTRACT

The self-organization of five model side-chain decorated polyaromatic asphaltene molecules with or without toluene solvent was investigated by means of atomistic molecular dynamic (MD) simulations. It was found that the organizational structure of polycyclic asphaltene molecules is significantly affected by the position and length of side chains. In the present study, two types of phase-separated stacking configurations, including the phase separated lamellar structure (PSLS) and the phase separated columnar structure (PSCS), were found. The PSLS and PSCS were also maintained in the presence of a small amount of toluene additive (30% wt fraction). When adding excess toluene molecules, the asphaltene molecules formed highly dispersed nanoaggregates. The dynamic properties of the π-π stacking structures in the PSLS and PSCS, as well as the nanoaggregates, were probed. It was found that the number and size of alkyl side chains significantly impacted the size and number of π-π stacking structures in the aggregates. Through tracking the structural evolution of the nanoaggregates, a possible dissociation mechanism of nanoaggregates is also suggested.

10.
Inorg Chem ; 54(6): 2551-9, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25742440

ABSTRACT

Using two types of triol ligands, several novel asymmetrically triol-functionalized Anderson organic hybrids have been efficiently synthesized in high purity and good yields via a convenient two-step esterification reaction. These organic-inorganic hybrids are chiral and can be spontaneously resolved with suitable solvents. Their molecular and crystal structures have been confirmed by single-crystal X-ray diffraction studies. Stable solid-state chirality of the corresponding enantiopure crystals has also been confirmed definitively by CD spectra. Interestingly, these organic-inorganic hybrids possess a layer-by-layer structure, forming solvent-accessible nanoscale chiral channels via a 1D infinite helical chain substructure. TGA measurements indicated that the species of the central heteroatoms significantly effects the stability of these compounds.

11.
Chem Commun (Camb) ; 50(89): 13813-6, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25253239

ABSTRACT

Silica coatings with refractive indices as low as 1.10 were prepared via a one-step base-catalysed sol-gel process using methyltriethoxysilane and tetraethoxysilane as co-precursors. No expensive equipment was required and the method did not require etching or high-temperature calcination.

SELECTION OF CITATIONS
SEARCH DETAIL
...