Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.679
Filter
1.
Cancer Lett ; 592: 216933, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38705564

ABSTRACT

Acute myeloid leukemia (AML) patients carrying Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) mutations often face a poor prognosis. While some FLT3 inhibitors have been used clinically, challenges such as short efficacy and poor specificity persist. Proteolytic targeting chimera (PROTAC), with its lower ligand affinity requirement for target proteins, offers higher and rapid targeting capability. Gilteritinib, used as the ligand for the target protein, was connected with different E3 ligase ligands to synthesize several series of PROTAC targeting FLT3-ITD. Through screening and structural optimization, the optimal lead compound PROTAC Z29 showed better specificity than Gilteritinib. Z29 induced FLT3 degradation through the proteasome pathway and inhibited tumor growth in subcutaneous xenograft mice. We verified Z29's minimal impact on platelets in a patient-derived xenografts (PDX) model compared to Gilteritinib. The combination of Z29 and Venetoclax showed better anti-tumor effects, lower platelet toxicity, and lower hepatic toxicity in FLT3-ITD+ models. The FLT3-selective PROTAC can mitigate the platelet toxicity of small molecule inhibitors, ensuring safety and efficacy in monotherapy and combination therapy with Venetoclax. It is a promising strategy for FLT3-ITD+ patients, especially those with platelet deficiency or liver damage.

2.
Nat Genet ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714866

ABSTRACT

Cauliflower (Brassica oleracea L. var. botrytis) is a distinctive vegetable that supplies a nutrient-rich edible inflorescence meristem for the human diet. However, the genomic bases of its selective breeding have not been studied extensively. Herein, we present a high-quality reference genome assembly C-8 (V2) and a comprehensive genomic variation map consisting of 971 diverse accessions of cauliflower and its relatives. Genomic selection analysis and deep-mined divergences were used to explore a stepwise domestication process for cauliflower that initially evolved from broccoli (Curd-emergence and Curd-improvement), revealing that three MADS-box genes, CAULIFLOWER1 (CAL1), CAL2 and FRUITFULL (FUL2), could have essential roles during curd formation. Genome-wide association studies identified nine loci significantly associated with morphological and biological characters and demonstrated that a zinc-finger protein (BOB06G135460) positively regulates stem height in cauliflower. This study offers valuable genomic resources for better understanding the genetic bases of curd biogenesis and florescent development in crops.

3.
Ageing Res Rev ; 98: 102320, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38719161

ABSTRACT

Aging is a gradual and irreversible natural process. With aging, the body experiences a functional decline, and the effects amplify the vulnerability to a range of age-related diseases, including neurodegenerative, cardiovascular, and metabolic diseases. Within the aging process, the morphology and function of mitochondria and the endoplasmic reticulum (ER) undergo alterations, particularly in the structure connecting these organelles known as mitochondria-associated membranes (MAMs). MAMs serve as vital intracellular signaling hubs, facilitating communication between the ER and mitochondria when regulating various cellular events, including calcium homeostasis, lipid metabolism, mitochondrial function, and apoptosis. The formation of MAMs is partly dependent on the interaction between the vesicle-associated membrane protein-associated protein-B (VAPB) and protein tyrosine phosphatase-interacting protein-51 (PTPIP51). Accumulating evidence has begun to elucidate the pivotal role of the VAPB-PTPIP51 tether in the initiation and progression of age-related diseases. In this study, we delineate the intricate structure and multifunctional role of the VAPB-PTPIP51 tether and discuss its profound implications in aging-associated diseases. Moreover, we provide a comprehensive overview of potential therapeutic interventions and pharmacological agents targeting the VAPB-PTPIP51-mediated MAMs, thereby offering a glimmer of hope in mitigating aging processes and treating age-related disorders.

4.
Am J Cancer Res ; 14(4): 1784-1801, 2024.
Article in English | MEDLINE | ID: mdl-38726262

ABSTRACT

Chondrocyte hypertrophy and the expression of its specific marker, the collagen type X gene (COL10A1), constitute key terminal differentiation stages during endochondral ossification in long bone development. Mutations in the COL10A1 gene are known to cause schmid type metaphyseal chondrodysplasia (SMCD) and spondyloepiphyseal dyschondrodysplasia (SMD). Moreover, abnormal COL10A1 expression and aberrant chondrocyte hypertrophy are strongly correlated with skeletal diseases, notably osteoarthritis (OA) and osteosarcoma (OS). Throughout the progression of OA, articular chondrocytes undergo substantial changes in gene expression and phenotype, including a transition to a hypertrophic-like state characterized by the expression of collagen type X, matrix metalloproteinase-13, and alkaline phosphatase. This state is similar to the process of endochondral ossification during cartilage development. OS, the most common pediatric bone cancer, exhibits characteristics of abnormal bone formation alongside the presence of tumor tissue containing cartilaginous components. This observation suggests a potential role for chondrogenesis in the development of OS. A deeper understanding of the shifts in collagen X expression and chondrocyte hypertrophy phenotypes in OA or OS may offer novel insights into their pathogenesis, thereby paving the way for potential therapeutic interventions. This review systematically summarizes the findings from multiple OA models (e.g., transgenic, surgically-induced, mechanically-loaded, and chemically-induced OA models), with a particular focus on their chondrogenic and/or hypertrophic phenotypes and possible signaling pathways. The OS phenotypes and pathogenesis in relation to chondrogenesis, collagen X expression, chondrocyte (hypertrophic) differentiation, and their regulatory mechanisms were also discussed. Together, this review provides novel insights into OA and OS therapeutics, possibly by intervening the process of abnormal endochondral-like pathway with altered collagen type X expression.

5.
J Agric Food Chem ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728113

ABSTRACT

RNA interference (RNAi)-based biopesticides offer an attractive avenue for pest control. Previous studies revealed high RNAi sensitivity in Holotrichia parallela larvae, showcasing its potential for grub control. In this study, we aimed to develop an environmentally friendly RNAi method for H. parallela larvae. The double-stranded RNA (dsRNA) of the V-ATPase-a gene (HpVAA) was loaded onto layered double hydroxide (LDH). The dsRNA/LDH nanocomplex exhibited increased environmental stability, and we investigated the absorption rate and permeability of dsRNA-nanoparticle complexes and explored the RNAi controlling effect. Silencing the HpVAA gene was found to darken the epidermis of H. parallela larvae, with growth cessation or death or mortality, disrupting the epidermis and midgut structure. Quantitative reverse transcription-polymerase chain reaction and confocal microscopy confirmed the effective absorption of the dsRNA/LDH nanocomplex by peanut plants, with distribution in roots, stems, and leaves. Nanomaterial-mediated RNAi silenced the target genes, leading to the death of pests. Therefore, these findings indicate the successful application of the nanomaterial-mediated RNAi system for underground pests, thus establishing a theoretical foundation for developing a green, safe, and efficient pest control strategy.

7.
Endocrine ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730070

ABSTRACT

INTRODUCTION: The differential diagnosis of parathyroid carcinoma (PC)/parathyroid adenoma (PA) in parathyroid tumors is critical for their management and prognosis. Circulating tumor cells (CTCs) identification in the peripheral blood of parathyroid tumors remains unknown. In this study, we proposed to investigate the differences of CTCs in PC/PA and the relationship with clinicopathologic features to assess its relevance to PC and value in identifying PC/PA. METHODS AND MATERIALS: Peripheral blood was collected from 27 patients with PC and 37 patients with PA treated in our hospital, and the number of chromosome 8 aberrant CTCs was detected by negative magnetic bead sorting fluorescence in situ hybridization (NE-FISH). The differences of CTCs in PC/PA peripheral blood were compared and their diagnostic efficacy was evaluated, and the correlation between CTCs and clinicopathological features of PC was further explored. RESULTS: CTCs differed significantly in PC/PA (p = 0.0008) and were up-regulated in PC, with good diagnostic efficacy. CTCs combined with alkaline phosphatase (ALP) assay improved the diagnostic efficacy in identifying PC/PA (AUC = 0.7838, p = 0.0001). The number of CTCs was correlated with tumor dimensions, but not significantly correlated with clinical markers such as calcium and PTH and pathological features such as vascular invasion, lymph node metastasis and distant metastasis. CONCLUSION: As a non-invasive liquid biopsy method, CTCs test combined with ALP test can be used as an important reference basis for timely and accurate identification and treatment of PC. It is of great significance to improve the current situation of PC diagnosis, treatment and prognosis.

8.
Front Mol Biosci ; 11: 1379124, 2024.
Article in English | MEDLINE | ID: mdl-38712344

ABSTRACT

Background: The management of primary hypothyroidism demands a comprehensive approach that encompasses both the implications of autoimmune thyroid disease and the distinct effects posed by obesity and metabolic irregularities. Despite its clinical importance, the interplay between obesity and hypothyroidism, especially in the context of metabolic perspectives, is insufficiently explored in existing research. This study endeavors to classify hypothyroidism by considering the presence of autoimmune thyroid disease and to examine its correlation with various metabolic obesity phenotypes. Method: This research was conducted by analyzing data from 1,170 individuals enrolled in the Thyroid Disease Database of Shandong Provincial Hospital. We assessed four distinct metabolic health statuses among the participants: Metabolically Healthy No Obese Metabolically Healthy Obese Metabolically Unhealthy No Obese and Metabolically Unhealthy Obese Utilizing logistic regression, we investigated the association between various metabolic obesity phenotypes and hypothyroidism. Results: The study revealed a significant correlation between the Metabolically Unhealthy Obese (MUO) phenotype and hypothyroidism, particularly among women who do not have thyroid autoimmunity. Notably, the Metabolically Unhealthy No Obese (MUNO) phenotype showed a significant association with hypothyroidism in individuals with thyroid autoimmunity, with a pronounced prevalence in women. Furthermore, elevated levels of triglycerides and blood glucose were found to be significantly associated with hypothyroidism in men with thyroid autoimmunity and in women without thyroid autoimmunity. Conclusion: Effective treatment of hypothyroidism requires a thorough understanding of the process of thyroid autoimmune development. In patients without concurrent thyroid autoimmunity, there is a notable correlation between obesity and metabolic issues with reduced thyroid function. Conversely, for patients with thyroid autoimmunity, a focused approach on managing metabolic abnormalities, especially triglyceride levels, is crucial.

9.
J Neurosurg ; : 1-11, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728755

ABSTRACT

OBJECTIVE: The aim of this study was to develop and validate a predictive nomogram model for long-term rebleeding events in patients with hemorrhagic moyamoya disease (HMMD). METHODS: In total, 554 patients with HMMD from the Fifth Medical Center of the Chinese PLA General Hospital (5-PLAGH cohort) were included and randomly divided into training (390 patients) and internal validation (164 patients) sets. An independent cohort from the First Medical Center and Eighth Medical Center of Chinese PLA General Hospital (the 1-PLAGH and 8-PLAGH cohort) was used for external validation (133 patients). Univariate Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression algorithm were used to identify significant factors associated with rebleeding, which were used to develop a nomogram for predicting 5- and 10-year rebleeding. RESULTS: Intraventricular hemorrhage was the most common type of cerebral hemorrhage (39.0% of patients in the 5-PLAGH cohort and 42.9% of the 1-PLAGH and 8-PLAGH cohort). During the mean ± SD follow-up period of 10.4 ± 2.9 years, 91 (16.4%) patients had rebleeding events in the 5-PLAGH cohort. The rebleeding rates were 12.3% (68 patients) at 5 years and 14.8% (82 patients) at 10 years. Rebleeding events were observed in 72 patients (14.3%) in the encephaloduroarteriosynangiosis (EDAS) surgery group, whereas 19 patients (37.3%) experienced rebleeding events in the conservative treatment group. This difference was statistically significant (p < 0.001). We selected 4 predictors (age at onset, number of episodes of bleeding, posterior circulation involvement, and EDAS surgery) for nomogram development. The concordance index (C-index) values of the nomograms of the training cohort, internal validation cohort, and the external validation cohort were 0.767 (95% CI 0.704-0.830), 0.814 (95% CI 0.694-0.934), and 0.718 (95% CI 0.661-0.775), respectively. The nomogram at 5 years exhibited a sensitivity of 48.1% and specificity of 87.5%. The positive and negative predictive values were 38.2% and 91.3%, respectively. The nomogram at 10 years exhibited a sensitivity of 47.1% and specificity of 89.1%. The positive and negative predictive values were 48.5% and 88.5%, respectively. CONCLUSIONS: EDAS may prevent rebleeding events and improve long-term clinical outcomes in patients with HMMD. The nomogram accurately predicted rebleeding events and assisted clinicians in identifying high-risk patients and devising individual treatments. Simultaneously, comprehensive and ongoing monitoring should be implemented for specific patients with HMMD throughout their entire lifespan.

10.
Biochem Pharmacol ; : 116250, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38705537

ABSTRACT

Obesity has emerged as a prominent global health concern, with heat stress posing a significant challenge to both human health and animal well-being. Despite a growing interest in environmental determinants of obesity, very few studies have examined the associations between heat stress-related environmental factors and adiposity. Consequently, there exists a clear need to understand the molecular mechanisms underlying the obesogenic effects of heat stress and to formulate preventive strategies. This study focused on culturing porcine subcutaneous preadipocytes at 41.5 ℃ to induce heat stress, revealing that this stressor triggered apoptosis and fat deposition. Analysis demonstrated an upregulation in the expression of HSP70, BAX, adipogenesis-related genes (PPARγ, AP2, CEBPα and FAS), the p-AMPK/AMPK ratio and SIRT1, PGC-1α in the heat stress group compared to the control group (P < 0.05). Conversely, the expression of lipid lysis-related genes (ATGL, HSL and LPL) and Bcl-2 decreased in the heat stress group compared to the control group (P < 0.05). Furthermore, subsequent activator and/or inhibitor experiments validated that heat stress modulated HSP70 and AMPK signalling pathways to enhance lipogenesis and inhibit lipolysis in porcine subcutaneous preadipocytes. Importantly, this study reveals, for the first time, that EGCG mitigates heat-stress-induced fat deposition by targeting HSP70 through the activation of AMPK-SIRT1-PGC-1α in porcine subcutaneous preadipocytes. These findings elucidate the molecular mechanisms contributing to heat stress-induced obesity and provide a foundation for the potential clinical utilisation of EGCG as a preventive measure against both heat stress and obesity.

11.
Sci Rep ; 14(1): 10324, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38710800

ABSTRACT

Various substances in the blood plasma serve as prognostic indicators of the progression of COVID-19. Consequently, multi-omics studies, such as proteomic and metabolomics, are ongoing to identify accurate biomarkers. Cytokines and chemokines, which are crucial components of immune and inflammatory responses, play pivotal roles in the transition from mild to severe illness. To determine the relationship between plasma cytokines and the progression of COVID-19, we used four study cohorts to perform a systematic study of cytokine levels in patients with different disease stages. We observed differential cytokine expression between patients with persistent-mild disease and patients with mild-to-severe transformation. For instance, IL-4 and IL-17 levels significantly increased in patients with mild-to-severe transformation, indicating differences within the mild disease group. Subsequently, we analysed the changes in cytokine and chemokine expression in the plasma of patients undergoing two opposing processes: the transition from mild to severe illness and the transition from severe to mild illness. We identified several factors, such as reduced expression of IL-16 and IL-18 during the severe phase of the disease and up-regulated expression of IL-10, IP-10, and SCGF-ß during the same period, indicative of the deterioration or improvement of patients' conditions. These factors obtained from fine-tuned research cohorts could provide auxiliary indications for changes in the condition of COVID-19 patients.


Subject(s)
COVID-19 , Chemokines , Cytokines , Disease Progression , Humans , COVID-19/blood , COVID-19/immunology , Cytokines/blood , Female , Male , Middle Aged , Cohort Studies , Chemokines/blood , Aged , Biomarkers/blood , Adult , SARS-CoV-2 , Severity of Illness Index
12.
BMC Genomics ; 25(1): 461, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734623

ABSTRACT

BACKGROUND: Pseudomonas syringae pv. actinidiae (Psa) is an important bacterial plant pathogen that causes severe damage to the kiwifruit industry worldwide. Three Psa strains were recently obtained from different kiwifruit orchards in Anhui Province, China. The present study mainly focused on the variations in virulence and genome characteristics of these strains based on the pathogenicity assays and comparative genomic analyses. RESULTS: Three strains were identified as biovar 3 (Psa3), along with strain QSY6 showing higher virulence than JZY2 and YXH1 in pathogenicity assays. The whole genome assembly revealed that each of the three strains had a circular chromosome and a complete plasmid. The chromosome sizes ranged from 6.5 to 6.6 Mb with a GC content of approximately 58.39 to 58.46%, and a predicted number of protein-coding sequences ranging from 5,884 to 6,019. The three strains clustered tightly with 8 Psa3 reference strains in terms of average nucleotide identity (ANI), whole-genome-based phylogenetic analysis, and pangenome analysis, while they were evolutionarily distinct from other biovars (Psa1 and Psa5). Variations were observed in the repertoire of effectors of the type III secretion system among all 15 strains. Moreover, synteny analysis of the three sequenced strains revealed eight genomic regions containing 308 genes exclusively present in the highly virulent strain QSY6. Further investigation of these genes showed that 16 virulence-related genes highlight several key factors, such as effector delivery systems (type III secretion systems) and adherence (type IV pilus), which might be crucial for the virulence of QSY6. CONCLUSION: Three Psa strains were identified and showed variant virulence in kiwifruit plant. Complete genome sequences and comparative genomic analyses further provided a theoretical basis for the potential pathogenic factors responsible for kiwifruit bacterial canker.


Subject(s)
Actinidia , Genome, Bacterial , Genomics , Phylogeny , Plant Diseases , Pseudomonas syringae , Pseudomonas syringae/genetics , Pseudomonas syringae/pathogenicity , China , Actinidia/microbiology , Virulence/genetics , Plant Diseases/microbiology
13.
Integr Med Res ; 13(2): 101039, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38746044

ABSTRACT

Background: Chronic fatigue is a predominant symptom of post COVID-19 condition, or long COVID. We aimed to evaluate the efficacy and safety of Traditional, Complementary and Integrative Medicine (TCIM) for fatigue post COVID-19 infection. Methods: Ten English and Chinese language databases and grey literature were searched up to 12 April 2023 for randomized controlled trials (RCTs). Cochrane "Risk of bias" (RoB) tool was applied. Evidence certainty was assessed using Grading of Recommendations Assessment, Development, and Evaluation (GRADE). Effect estimates were presented as risk ratio (RR) or mean difference (MD) with 95% confidence interval (CI). Results: Thirteen RCTs with 1632 participants were included. One RCT showed that Bufei Huoxue herbal capsules reduced fatigue (n=129, MD -14.90, 95%CI -24.53 to -5.27), one RCT reported that Ludangshen herbal liquid lowered fatigue (n=184, MD -1.90, 95%CI -2.38 to -1.42), and the other one RCT shown that fatigue disappearance rate was higher with Ludangshen herbal liquid (n=184, RR 4.19, 95%CI 2.06 to 8.53). Compared to traditional Chinese medicine rehabilitation (TCM-rahab) alone, one RCT showed that fatigue symptoms were lower following Qingjin Yiqi granules plus TCM-rehab (n=388, MD -0.48, 95%CI -0.50 to -0.46). Due to concerns with RoB and/or imprecision, the certainty in this evidence was low to very low. No serious adverse events was reported. Conclusions: Limited evidence suggests that various TCIM interventions might reduce post COVID-19 fatigue. Larger, high quality RCTs of longer duration are required to confirm these preliminary findings. Study Registration: The protocol of this review has been registered at PROSPERO: CRD42022384136.

14.
bioRxiv ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38746264

ABSTRACT

Despite the profound behavioral effects of the striatal dopamine (DA) activity and the inwardly rectifying potassium channel ( Kir ) being a key determinant of striatal medium spiny neuron (MSN) activity that also profoundly affects behavior, previously reported DA regulations of Kir are conflicting and incompatible with MSN function in behavior. Here we show that in normal mice with an intact striatal DA system, the predominant effect of DA activation of D1Rs in D1-MSNs is to cause a modest depolarization and increase in input resistance by inhibiting Kir, thus moderately increasing the spike outputs from behavior-promoting D1-MSNs. In parkinsonian (DA-depleted) striatum, DA increases D1-MSN intrinsic excitability more strongly than in normal striatum, consequently strongly increasing D1-MSN spike firing that is behavior-promoting; this DA excitation of D1-MSNs is stronger when the DA depletion is more severe. The DA inhibition of Kir is occluded by the Kir blocker barium chloride (BaCl 2 ). In behaving parkinsonian mice, BaCl 2 microinjection into the dorsal striatum stimulates movement but occludes the motor stimulation of D1R agonism. Taken together, our results resolve the long-standing question about what D1R agonism does to D1-MSN excitability in normal and parkinsonian striatum and strongly indicate that D1R inhibition of Kir is a key ion channel mechanism that mediates D1R agonistic behavioral stimulation in normal and parkinsonian animals.

15.
bioRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746414

ABSTRACT

SARS-CoV-2 continues to be a public health burden, driven in-part by its continued antigenic diversification and resulting emergence of new variants. While increasing herd immunity, current vaccines, and therapeutics have improved outcomes for some; prophylactic and treatment interventions that are not compromised by viral evolution of the Spike protein are still needed. Using a rationally designed SARS-CoV-2 Receptor Binding Domain (RBD) - ACE2 fusion protein and differential selection process with native Omicron RBD protein, we developed a recombinant human monoclonal antibody (hmAb) from a convalescent individual following SARS-CoV-2 Omicron infection. The resulting hmAb, 1301B7 potently neutralized a wide range of SARS-CoV-2 variants including the original Wuhan and more recent Omicron JN.1 strain, as well as SARS-CoV. Structure determination of the SARS-CoV-2 EG5.1 Spike/1301B7 Fab complex by cryo-electron microscopy at 3.1Å resolution demonstrates 1301B7 contacts the ACE2 binding site of RBD exclusively through its VH1-69 heavy chain, making contacts using CDRs1-3, as well as framework region 3 (FR3). Broad specificity is achieved through 1301B7 binding to many conserved residues of Omicron variants including Y501 and H505. Consistent with its extensive binding epitope, 1301B7 is able to potently diminish viral burden in the upper and lower respiratory tract and protect mice from challenge with Omicron XBB1.5 and Omicron JN.1 viruses. These results suggest 1301B7 has broad potential to prevent or treat clinical SARS-CoV-2 infections and to guide development of RBD-based universal SARS-CoV-2 prophylactic vaccines and therapeutic approaches.

16.
Front Oncol ; 14: 1338325, 2024.
Article in English | MEDLINE | ID: mdl-38746672

ABSTRACT

Objective: Cancer seriously endangers human health and represents a global public health issue. Cancer-related fatigue (CRF) is a distressing and persistent sense of exhaustion caused by cancer or cancer treatment, widely prevalent among cancer patients. This study aims to summarize emerging trends and provide directions for future research of CRF through bibliometric and visualization analyses. Methods: A systematic search in the Web of Science Core Collection database from 2001-01-01 to 2023-05-18 were conducted. Only reviews and articles written in English were considered. CiteSpace and the R were used for bibliometric and visualization analyses. Results: The analysis revealed that 2,566 studies on CRF have been published by 1,041 institutions in 70 countries so far. The number of articles published and cited annually have been steadily increasing. Eduardo Bruera published the most articles, and Julienne E Bower is the most co-cited author. The University of Texas System is the leading institution in cancer-related fatigue research. The United States and China have the largest number of publications. Supportive Care in Cancer published the most articles, and Journal of Clinical Oncology is the most co-cited journal. "Comparison of Pharmaceutical, Psychological, and Exercise Treatments for Cancer-Related Fatigue: A Meta-analysis", authored by Mustian KM et al. and published in JAMA Oncology was the most co-cited document. Keyword analysis indicated that research focus had shifted from "epoetin alpha" and "anemia" to "risk factors", "systematic review", "acupuncture", "anxiety", "traditional Chinese medicine" and "guidelines". Conclusion: In conclusion, this analysis provides comprehensive research trends and knowledge network maps of CRF. Clinical physicians should concurrently focus on the anemia, insomnia, anxiety, and depression status of patients when assessing or managing CRF. Improvements in related risk factors also contribute to alleviating fatigue. Furthermore, it is essential to pay attention to authoritative CRF guidelines. Acupuncture and traditional Chinese medicine also have therapeutic potential, which merits further investigation. Researchers should draw attention to the crucial roles of inflammation, hypoxia, and mitochondrial dysfunction, which could be the frontiers.

17.
ISME J ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747389

ABSTRACT

Spillovers of viruses into human occur more frequently under warmer conditions, particularly arboviruses. The invasive tick species Haemaphysalis longicornis poses a significant public health threat due to its global expansion and its potential to carry a wide range of pathogens. We analyzed meta-transcriptomic data from 3595 adult H. longicornis ticks collected between 2016 and 2019 in 22 provinces across China, encompassing diverse ecological conditions. Generalized additive modelling revealed that climate factors exerted a stronger influence on the virome of H. longicornis compared to other ecological factors, such as ecotypes, distance to coastline, animal host, tick gender, and anti-viral immunity. We investigated the mechanistic understanding of how climate changes drive the tick virome using causality inference and emphasized its significance for public health. Our findings demonstrated that higher temperatures and lower relative humidity/precipitation contribute to variations in animal host diversity, leading to an increased diversity of tick virome, particularly the evenness of vertebrate associated viruses. This finding may explain the evolution of tick-borne viruses into generalists across multiple hosts, thereby increasing the probability of spillover events involving tick-borne pathogens. Deep learning projections indicate that the diversity of H. longicornis virome is expected to increase in 81.9% of regions under the SSP8.5 scenario from 2019-2030. Extension of surveillance should be implemented to avert the spread of tick-borne diseases.

18.
Acta Otolaryngol ; : 1-9, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742731

ABSTRACT

BACKGROUND: In temporal bone specimens from long-term cochlear implant users, foreign body response within the cochlea has been demonstrated. However, how hearing changes after implantation and fibrosis progresses within the cochlea is unknown. OBJECTIVES: To investigate the short-term dynamic changes in hearing and cochlear histopathology in minipigs after electrode array insertion. MATERIAL AND METHODS: Twelve minipigs were selected for electrode array insertion (EAI) and the Control. Hearing tests were performed preoperatively and on 0, 7, 14, and 28 day(s) postoperatively, and cochlear histopathology was performed after the hearing tests on 7, 14, and 28 days after surgery. RESULTS: Electrode array insertion had a significant effect for the frequency range tested (1 kHz-20kHz). Exudation was evident one week after electrode array insertion; at four weeks postoperatively, a fibrous sheath formed around the electrode. At each time point, the endolymphatic hydrops was found; no significant changes in the morphology and packing density of the spiral ganglion neurons were observed. CONCLUSIONS AND SIGNIFICANCE: The effect of electrode array insertion on hearing and intracochlear fibrosis was significant. The process of fibrosis and endolymphatic hydrops seemed to not correlate with the degree of hearing loss, nor did it affect spiral ganglion neuron integrity in the 4-week postoperative period.

SELECTION OF CITATIONS
SEARCH DETAIL
...