Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Metab Brain Dis ; 35(5): 695-707, 2020 06.
Article in English | MEDLINE | ID: mdl-32172519

ABSTRACT

Post traumatic stress disorder (PTSD) is widely regarded as a stress-related and trauma disorder. The symptoms of PTSD are characterized as a spectrum of vulnerabilities after the exposure to an extremely traumatic stressor. Considering as one of complex mental disorders, little progress has been made toward its diagnostic biomarkers, despite the involvement of PTSD has been studied. Many studies into the underlying neurobiology of PTSD implicated the dysfunction of neurosteroids biosynthesis and neuorinflammatory processes. Translocator protein 18 kDa (TSPO) has been considered as one of the promising therapeutic biomarkers for neurological stress disorders (like PTSD, depression, anxiety, et al) without the benzodiazepine-like side effects. This protein participates in the formation of neurosteroids and modulation of neuroinflammation. The review outlines current knowledge involving the role of TSPO in the neuropathology of PTSD and the anti-PTSD-like effects of TSPO ligands.


Subject(s)
Receptors, GABA/drug effects , Receptors, GABA/genetics , Stress Disorders, Post-Traumatic/drug therapy , Stress Disorders, Post-Traumatic/genetics , Animals , Biomarkers/analysis , Humans , Ligands , Stress Disorders, Post-Traumatic/diagnosis
2.
Zhongguo Zhong Yao Za Zhi ; 44(8): 1517-1523, 2019 Apr.
Article in Chinese | MEDLINE | ID: mdl-31090313

ABSTRACT

The present study was conducted to explore the effect of endophytic fungi fraction on growth and anti-oxidative activity of Eleutherococcus senticosus. The growth,yield,contents of MDA,and antioxidant activities were assessed in E. senticosus under five fungi fractions,namely BZ,MH,DT,JS,and XFZ. The results showed that fungi fractions and component significantly affected the growth,low concentration of DT fungi fraction significantly increased the biomass of E. senticosus,reduced the MDA content in cells,and the antioxidant activities of the aqueous extracts were superior to the others. The results indicated that low concentration of DT fungi fraction was the optimum fraction to achieve high yield and quality of E. senticosus.


Subject(s)
Antioxidants/metabolism , Eleutherococcus/growth & development , Fungi/chemistry , Eleutherococcus/metabolism , Malondialdehyde/metabolism , Oxidative Stress
3.
Braz. j. microbiol ; 49(2): 362-369, Apr.-June 2018. graf
Article in English | LILACS | ID: biblio-889228

ABSTRACT

Abstract Aspergillus sp., Fusarium sp., and Ramularia sp. were endophytic fungi isolated from Rumex gmelini Turcz (RGT), all of these three strains could produce some similar bioactive secondary metabolites of their host. However the ability to produce active components degraded significantly after cultured these fungi alone for a long time, and were difficult to recover. In order to obtain more bioactive secondary metabolites, the co-culture of tissue culture seedlings of RGT and its endophytic fungi were established respectively, and RGT seedling was selected as producer. Among these fungi, Aspergillus sp. showed the most significant enhancement on bioactive components accumulation in RGT seedlings. When inoculated Aspergillus sp. spores into media of RGT seedlings that had taken root for 20 d, and made spore concentration in co-culture medium was 1 × 104 mL-1, after co-cultured for 12 d, the yield of chrysophaein, resveratrol, chrysophanol, emodin and physcion were 3.52-, 3.70-, 3.60-, 4.25-, 3.85-fold of the control group. The extreme value of musizin yield was 0.289 mg, which was not detected in the control groups. The results indicated that co-culture with endophytic fungi could significantly enhance bioactive secondary metabolites production of RGT seedlings.


Subject(s)
Humans , Adolescent , Ascomycota/metabolism , Rumex/metabolism , Rumex/microbiology , Endophytes/metabolism , Phytochemicals/metabolism , Ascomycota/isolation & purification , Ascomycota/growth & development , Time Factors , Coculture Techniques , Rumex/growth & development , Seedlings/growth & development , Seedlings/metabolism , Seedlings/microbiology , Endophytes/isolation & purification , Endophytes/growth & development
4.
Braz J Microbiol ; 49(2): 362-369, 2018.
Article in English | MEDLINE | ID: mdl-29254631

ABSTRACT

Aspergillus sp., Fusarium sp., and Ramularia sp. were endophytic fungi isolated from Rumex gmelini Turcz (RGT), all of these three strains could produce some similar bioactive secondary metabolites of their host. However the ability to produce active components degraded significantly after cultured these fungi alone for a long time, and were difficult to recover. In order to obtain more bioactive secondary metabolites, the co-culture of tissue culture seedlings of RGT and its endophytic fungi were established respectively, and RGT seedling was selected as producer. Among these fungi, Aspergillus sp. showed the most significant enhancement on bioactive components accumulation in RGT seedlings. When inoculated Aspergillus sp. spores into media of RGT seedlings that had taken root for 20d, and made spore concentration in co-culture medium was 1×104mL-1, after co-cultured for 12d, the yield of chrysophaein, resveratrol, chrysophanol, emodin and physcion were 3.52-, 3.70-, 3.60-, 4.25-, 3.85-fold of the control group. The extreme value of musizin yield was 0.289mg, which was not detected in the control groups. The results indicated that co-culture with endophytic fungi could significantly enhance bioactive secondary metabolites production of RGT seedlings.


Subject(s)
Ascomycota/metabolism , Endophytes/metabolism , Phytochemicals/metabolism , Rumex/metabolism , Rumex/microbiology , Adolescent , Ascomycota/growth & development , Ascomycota/isolation & purification , Coculture Techniques , Endophytes/growth & development , Endophytes/isolation & purification , Humans , Rumex/growth & development , Seedlings/growth & development , Seedlings/metabolism , Seedlings/microbiology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...