Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Cell Death Differ ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594444

ABSTRACT

Glioblastoma (GBM) is the most aggressive malignant primary brain tumor characterized by a highly heterogeneous and immunosuppressive tumor microenvironment (TME). The symbiotic interactions between glioblastoma stem cells (GSCs) and tumor-associated macrophages (TAM) in the TME are critical for tumor progression. Here, we identified that IFI35, a transcriptional regulatory factor, plays both cell-intrinsic and cell-extrinsic roles in maintaining GSCs and the immunosuppressive TME. IFI35 induced non-canonical NF-kB signaling through proteasomal processing of p105 to the DNA-binding transcription factor p50, which heterodimerizes with RELB (RELB/p50), and activated cell chemotaxis in a cell-autonomous manner. Further, IFI35 induced recruitment and maintenance of M2-like TAMs in TME in a paracrine manner. Targeting IFI35 effectively suppressed in vivo tumor growth and prolonged survival of orthotopic xenograft-bearing mice. Collectively, these findings reveal the tumor-promoting functions of IFI35 and suggest that targeting IFI35 or its downstream effectors may provide effective approaches to improve GBM treatment.

2.
Sci Transl Med ; 16(739): eadg5553, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507470

ABSTRACT

Glioblastoma, the most lethal primary brain tumor, harbors glioma stem cells (GSCs) that not only initiate and maintain malignant phenotypes but also enhance therapeutic resistance. Although frequently mutated in glioblastomas, the function and regulation of PTEN in PTEN-intact GSCs are unknown. Here, we found that PTEN directly interacted with MMS19 and competitively disrupted MMS19-based cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) machinery in differentiated glioma cells. PTEN was specifically succinated at cysteine (C) 211 in GSCs compared with matched differentiated glioma cells. Isotope tracing coupled with mass spectrometry analysis confirmed that fumarate, generated by adenylosuccinate lyase (ADSL) in the de novo purine synthesis pathway that is highly activated in GSCs, promoted PTEN C211 succination. This modification abrogated the interaction between PTEN and MMS19, reactivating the CIA machinery pathway in GSCs. Functionally, inhibiting PTEN C211 succination by reexpressing a PTEN C211S mutant, depleting ADSL by shRNAs, or consuming fumarate by the US Food and Drug Administration-approved prescription drug N-acetylcysteine (NAC) impaired GSC maintenance. Reexpressing PTEN C211S or treating with NAC sensitized GSC-derived brain tumors to temozolomide and irradiation, the standard-of-care treatments for patients with glioblastoma, by slowing CIA machinery-mediated DNA damage repair. These findings reveal an immediately practicable strategy to target GSCs to treat glioblastoma by combination therapy with repurposed NAC.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/drug therapy , Iron/metabolism , Glioma/drug therapy , Brain Neoplasms/drug therapy , Neoplastic Stem Cells/pathology , Sulfur/metabolism , Sulfur/therapeutic use , Fumarates , Cell Line, Tumor , PTEN Phosphohydrolase/metabolism
3.
Nat Commun ; 14(1): 5913, 2023 09 22.
Article in English | MEDLINE | ID: mdl-37737247

ABSTRACT

Temozolomide (TMZ) is a standard treatment for glioblastoma (GBM) patients. However, TMZ has moderate therapeutic effects due to chemoresistance of GBM cells through less clarified mechanisms. Here, we demonstrate that TMZ-derived 5-aminoimidazole-4-carboxamide (AICA) is converted to AICA ribosyl-5-phosphate (AICAR) in GBM cells. This conversion is catalyzed by hypoxanthine phosphoribosyl transferase 1 (HPRT1), which is highly expressed in human GBMs. As the bona fide activator of AMP-activated protein kinase (AMPK), TMZ-derived AICAR activates AMPK to phosphorylate threonine 52 (T52) of RRM1, the catalytic subunit of ribonucleotide reductase (RNR), leading to RNR activation and increased production of dNTPs to fuel the repairment of TMZ-induced-DNA damage. RRM1 T52A expression, genetic interruption of HPRT1-mediated AICAR production, or administration of 6-mercaptopurine (6-MP), a clinically approved inhibitor of HPRT1, blocks TMZ-induced AMPK activation and sensitizes brain tumor cells to TMZ treatment in mice. In addition, HPRT1 expression levels are positively correlated with poor prognosis in GBM patients who received TMZ treatment. These results uncover a critical bifunctional role of TMZ in GBM treatment that leads to chemoresistance. Our findings underscore the potential of combined administration of clinically available 6-MP to overcome TMZ chemoresistance and improve GBM treatment.


Subject(s)
Glioblastoma , Hypoxanthine Phosphoribosyltransferase , Ribonucleotide Reductases , Animals , Humans , Mice , AMP-Activated Protein Kinases , Drug Resistance, Neoplasm/genetics , Glioblastoma/drug therapy , Glioblastoma/genetics , Hypoxanthines , Mercaptopurine , Temozolomide/pharmacology , Hypoxanthine Phosphoribosyltransferase/genetics
4.
Nat Commun ; 14(1): 5590, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37696831

ABSTRACT

Male breast cancer (MBC) is a rare but aggressive malignancy with cellular and immunological characteristics that remain unclear. Here, we perform transcriptomic analysis for 111,038 single cells from tumor tissues of six MBC and thirteen female breast cancer (FBC) patients. We find that that MBC has significantly lower infiltration of T cells relative to FBC. Metastasis-related programs are more active in cancer cells from MBC. The activated fatty acid metabolism involved with FASN is related to cancer cell metastasis and low immune infiltration of MBC. T cells in MBC show activation of p38 MAPK and lipid oxidation pathways, indicating a dysfunctional state. In contrast, T cells in FBC exhibit higher expression of cytotoxic markers and immune activation pathways mediated by immune-modulatory cytokines. Moreover, we identify the inhibitory interactions between cancer cells and T cells in MBC. Our study provides important information for understanding the tumor immunology and metabolism of MBC.


Subject(s)
Breast Neoplasms, Male , Humans , Female , Male , Single-Cell Gene Expression Analysis , Immunosuppression Therapy , Lipid Metabolism/genetics , Fatty Acids
5.
Cancer Lett ; 573: 216380, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37660885

ABSTRACT

Preoperative MRI is an essential diagnostic and therapeutic reference for gliomas. This study aims to evaluate the prognostic aspect of a radiomics biomarker for glioma and further investigate its relationship with tumor microenvironment and macrophage infiltration. We covered preoperative MRI of 664 glioma patients from three independent datasets: Jiangsu Province Hospital (JSPH, n = 338), The Cancer Genome Atlas dataset (TCGA, n = 252), and Repository of Molecular Brain Neoplasia Data (REMBRANDT, n = 74). Incorporating a multistep post-processing workflow, 20 radiomics features (Rads) were selected and a radiomics survival biomarker (RadSurv) was developed, proving highly efficient in risk stratification of gliomas (cut-off = 1.06), as well as lower-grade gliomas (cut-off = 0.64) and glioblastomas (cut-off = 1.80) through three fixed cut-off values. Through immune infiltration analysis, we found a positive correlation between RadSurv and macrophage infiltration (RMΦ = 0.297, p < 0.001; RM2Φ = 0.241, p < 0.001), further confirmed by immunohistochemical-staining (glioblastomas, n = 32) and single-cell sequencing (multifocal glioblastomas, n = 2). In conclusion, RadSurv acts as a strong prognostic biomarker for gliomas, exhibiting a non-negligible positive correlation with macrophage infiltration, especially with M2 macrophage, which strongly suggests the promise of radiomics-based models as a preoperative alternative to conventional genomics for predicting tumor macrophage infiltration and provides clinical guidance for immunotherapy.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Glioma/diagnostic imaging , Glioma/genetics , Glioma/therapy , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Genomics , Macrophages , Tumor Microenvironment
6.
Clin Cancer Res ; 29(18): 3779-3792, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37439870

ABSTRACT

PURPOSE: The dynamic interplay between glioblastoma stem cells (GSC) and tumor-associated macrophages (TAM) sculpts the tumor immune microenvironment (TIME) and promotes malignant progression of glioblastoma (GBM). However, the mechanisms underlying this interaction are still incompletely understood. Here, we investigate the role of CXCL8 in the maintenance of the mesenchymal state of GSC populations and reprogramming the TIME to an immunosuppressive state. EXPERIMENTAL DESIGN: We performed an integrative multi-omics analyses of RNA sequencing, GBM mRNA expression datasets, immune signatures, and epigenetic profiling to define the specific genes expressed in the mesenchymal GSC subsets. We then used patient-derived GSCs and a xenograft murine model to investigate the mechanisms of tumor-intrinsic and extrinsic factor to maintain the mesenchymal state of GSCs and induce TAM polarization. RESULTS: We identified that CXCL8 was preferentially expressed and secreted by mesenchymal GSCs and activated PI3K/AKT and NF-κB signaling to maintain GSC proliferation, survival, and self-renewal through a cell-intrinsic mechanism. CXCL8 induced signaling through a CXCR2-JAK2/STAT3 axis in TAMs, which supported an M2-like TAM phenotype through a paracrine, cell-extrinsic pathway. Genetic- and small molecule-based inhibition of these dual complementary signaling cascades in GSCs and TAMs suppressed GBM tumor growth and prolonged survival of orthotopic xenograft-bearing mice. CONCLUSIONS: CXCL8 plays critical roles in maintaining the mesenchymal state of GSCs and M2-like TAM polarization in GBM, highlighting an interplay between cell-autonomous and cell-extrinsic mechanisms. Targeting CXCL8 and its downstream effectors may effectively improve GBM treatment.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Animals , Mice , Glioblastoma/pathology , Tumor-Associated Macrophages/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Neoplastic Stem Cells/metabolism , Cell Proliferation , Tumor Microenvironment/genetics
8.
Neuro Oncol ; 25(9): 1578-1591, 2023 09 05.
Article in English | MEDLINE | ID: mdl-36934350

ABSTRACT

BACKGROUND: Glioblastomas (GBMs) display striking dysregulation of metabolism to promote tumor growth. Glioblastoma stem cells (GSCs) adapt to regions of heterogeneous nutrient availability, yet display dependency on de novo cholesterol biosynthesis. The transcription factor Sterol Regulatory Element-Binding Protein 2 (SREBP2) regulates cholesterol biosynthesis enzymes and uptake receptors. Here, we investigate adaptive behavior of GSCs under different cholesterol supplies. METHODS: In silico analysis of patient tumors demonstrated enrichment of cholesterol synthesis associated with decreased angiogenesis. Comparative gene expression of cholesterol biosynthesis enzymes in paired GBM specimens and GSCs were performed. In vitro and in vivo loss-of-function genetic and pharmacologic assays were conducted to evaluate the effect of SREBP2 on GBM cholesterol biosynthesis, proliferation, and self-renewal. Chromatin immunoprecipitation quantitative real-time PCR was leveraged to map the regulation of SREBP2 to cholesterol biosynthesis enzymes and uptake receptors in GSCs. RESULTS: Cholesterol biosynthetic enzymes were expressed at higher levels in GBM tumor cores than in invasive margins. SREBP2 promoted cholesterol biosynthesis in GSCs, especially under starvation, as well as proliferation, self-renewal, and tumor growth. SREBP2 governed the balance between cholesterol biosynthesis and uptake in different nutrient conditions. CONCLUSIONS: SREBP2 displays context-specific regulation of cholesterol biology based on its availability in the microenvironment with induction of cholesterol biosynthesis in the tumor core and uptake in the margin, informing a novel treatment strategy for GBM.


Subject(s)
Glioblastoma , Humans , Cell Line, Tumor , Cholesterol/metabolism , Gene Expression Regulation , Glioblastoma/pathology , Neoplastic Stem Cells/metabolism , Stem Cells/metabolism , Stem Cells/pathology , Sterol Regulatory Element Binding Protein 2/genetics , Sterol Regulatory Element Binding Protein 2/metabolism , Tumor Microenvironment
9.
Cell Rep Med ; 4(3): 100974, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36921601

ABSTRACT

Incidence of early-onset colorectal cancer (EOCRC), defined by a diagnosed age under 50 years, is increasing, but its heterogeneous etiologies that differ from general CRC remain undetermined. We initially characterize the genome, epigenome, transcriptome, and proteome of tumors from 79 patients in a Chinese CRC cohort. Data for an additional 126 EOCRC subjects are obtained from the International Cancer Genome Consortium Chinese cohort and The Cancer Genome Atlas European cohort. We observe that early-onset tumors have a high tumor mutation burden; increased DNA repair features by mutational signature 3 and multi-layer pathway enrichments; strong perturbations at effects of DNA methylation and somatic copy-number alteration on gene expression; and upregulated immune infiltration as hot tumors underlying immunophenotypes. Notably, LMTK3 exhibits ancestral mutation disparity, potentially being a functional modulator and biomarker that drives molecular alterations in EOCRC development and immunotherapies. This integrative omics study provides valuable knowledge for precision oncology of CRC.


Subject(s)
Colorectal Neoplasms , Multiomics , Humans , Middle Aged , Precision Medicine , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Transcriptome/genetics , Mutation , Membrane Proteins/genetics , Protein Serine-Threonine Kinases/genetics
10.
Cancer Res ; 83(5): 771-785, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36622331

ABSTRACT

Tumor-associated macrophages (TAM) play a crucial role in immunosuppression. However, how TAMs are transformed into immunosuppressive phenotypes and influence the tumor microenvironment (TME) is not fully understood. Here, we utilized single-cell RNA sequencing and whole-exome sequencing data of glioblastoma (GBM) tissues and identified a subset of TAMs dually expressing macrophage and tumor signatures, which were termed double-positive TAMs. Double-positive TAMs tended to be bone marrow-derived macrophages (BMDM) and were characterized by immunosuppressive phenotypes. Phagocytosis of glioma cells by BMDMs in vitro generated double-positive TAMs with similar immunosuppressive phenotypes to double-positive TAMs in the GBM TME of patients. The double-positive TAMs were transformed into M2-like macrophages and drove immunosuppression by expressing immune-checkpoint proteins CD276, PD-L1, and PD-L2 and suppressing the proliferation of activated T cells. Together, glioma cell phagocytosis by BMDMs in the TME leads to the formation of double-positive TAMs with enhanced immunosuppressive phenotypes, shedding light on the processes driving TAM-mediated immunosuppression in GBM. SIGNIFICANCE: Bone marrow-derived macrophages phagocytose glioblastoma cells to form double-positive cells, dually expressing macrophage and tumor signatures that are transformed into M2-like macrophages and drive immunosuppression.


Subject(s)
Glioblastoma , Glioma , Macrophages , Phagocytosis , Humans , B7 Antigens , Glioblastoma/genetics , Glioblastoma/immunology , Glioblastoma/pathology , Glioma/metabolism , Glioma/pathology , Macrophages/immunology , Macrophages/metabolism , Phenotype , Tumor Microenvironment/immunology
11.
Cancer Res ; 83(7): 1094-1110, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36696363

ABSTRACT

Radiotherapy is a major component of standard-of-care treatment for gliomas, the most prevalent type of brain tumor. However, resistance to radiotherapy remains a major concern. Identification of mechanisms governing radioresistance in gliomas could reveal improved therapeutic strategies for treating patients. Here, we report that mitochondrial metabolic pathways are suppressed in radioresistant gliomas through integrated analyses of transcriptomic data from glioma specimens and cell lines. Decreased expression of peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC1α), the key regulator of mitochondrial biogenesis and metabolism, correlated with glioma recurrence and predicted poor prognosis and response to radiotherapy of patients with glioma. The subpopulation of glioma cells with low-mitochondrial-mass exhibited reduced expression of PGC1α and enhanced resistance to radiotherapy treatment. Mechanistically, PGC1α was phosphorylated at serine (S) 636 by DNA-dependent protein kinase in response to irradiation. Phosphorylation at S636 promoted the degradation of PGC1α by facilitating its binding to the E3 ligase RNF34. Restoring PGC1α activity with expression of PGC1α S636A, a phosphorylation-resistant mutant, or a small-molecule PGC1α activator ZLN005 increased radiosensitivity of resistant glioma cells by reactivating mitochondria-related reactive oxygen species production and inducing apoptotic effects both in vitro and in vivo. In summary, this study identified a self-protective mechanism in glioma cells in which radiotherapy-induced degradation of PGC1α and suppression of mitochondrial biogenesis play a central role. Targeted activation of PGC1α could help improve response to radiotherapy in patients with glioma. SIGNIFICANCE: Glioma cells reduce mitochondrial biogenesis by promoting PGC1α degradation to promote resistance to radiotherapy, indicating potential therapeutic strategies to enhance radiosensitivity.


Subject(s)
Glioma , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Organelle Biogenesis , Mitochondria/metabolism , Glioma/genetics , Glioma/radiotherapy , Glioma/metabolism , Carrier Proteins/metabolism
12.
Leukemia ; 37(2): 308-325, 2023 02.
Article in English | MEDLINE | ID: mdl-36543880

ABSTRACT

Chemoresistance and relapse are the leading cause of AML-related deaths. Utilizing single-cell RNA sequencing (scRNA-seq), we dissected the cellular states of bone marrow samples from primary refractory or short-term relapsed AML patients and defined the transcriptional intratumoral heterogeneity. We found that compared to proliferating stem/progenitor-like cells (PSPs), a subpopulation of quiescent stem-like cells (QSCs) were involved in the chemoresistance and poor outcomes of AML. By performing longitudinal scRNA-seq analyses, we demonstrated that PSPs were reprogrammed to obtain a QSC-like expression pattern during chemotherapy in refractory AML patients, characterized by the upregulation of CD52 and LGALS1 expression. Flow cytometric analysis further confirmed that the preexisting CD99+CD49d+CD52+Galectin-1+ (QSCs) cells at diagnosis were associated with chemoresistance, and these cells were further enriched in the residual AML cells of refractory patients. Interaction of CD52-SIGLEC10 between QSCs and monocytes may contribute to immune evading and poor outcomes. Furthermore, we identified that LGALS1 was a promising target for chemoresistant AML, and LGALS1 inhibitor could help eliminate QSCs and enhance the chemotherapy in patient-derived primary AML cells, cell lines, and AML xenograft models. Our results will facilitate a better understanding of the AML chemoresistance mechanism and the development of novel therapeutic strategies for relapsed/refractory AML patients.


Subject(s)
Antineoplastic Agents , Leukemia, Myeloid, Acute , Humans , Galectin 1/genetics , Galectin 1/therapeutic use , Cellular Reprogramming , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Antineoplastic Agents/therapeutic use , Single-Cell Analysis
14.
J Immunother Cancer ; 10(11)2022 11.
Article in English | MEDLINE | ID: mdl-36450378

ABSTRACT

The mechanism(s) of immune checkpoint inhibitor (ICI)-induced myasthenia gravis (MG), an immune-related adverse event (irAE) that is fatal and limits subsequent ICI use, remain unexplored. Here, through comparative genomic analysis, we identified a pathogenic p.S467C germline variant in SLC22A5 in a thymoma case with ICI-induced MG, which was found to be associated with fatty acid oxidation through its regulation on L-carnitine levels. Remarkably, ICI rechallenge with L-carnitine pretreatment led to durable response without MG-related symptoms. Thus, we provide the first clinical evidence of genetic test-directed irAE management, which integrates individualized ICI treatment into the evolving paradigm of cancer management.


Subject(s)
Myasthenia Gravis , Thymoma , Thymus Neoplasms , Humans , Immune Checkpoint Inhibitors/adverse effects , Myasthenia Gravis/chemically induced , Thymoma/drug therapy , Carnitine , Solute Carrier Family 22 Member 5
15.
Cancer Lett ; 551: 215972, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36265653

ABSTRACT

Cutaneous T cell lymphoma (CTCL) is characterized by the accumulation of malignant T cells in the skin. However, advanced CTCL pathophysiology remains elusive and therapeutic options are limited due to the high intratumoral heterogeneity and complicated tumor microenvironment (TME). By comparing the single-cell RNA-seq (scRNA-seq) data from advanced CTCL patients and healthy controls (HCs), we showed that CTCL had a higher enrichment of T/NK and myeloid cells. Subpopulations of T cells (CXCR3+, GNLY+, CREM+, and MKI67+ T cells), with high proliferation, stemness, and copy number variation (CNV) levels, contribute to the malignancy of CTCL. Besides, CCL13+ monocytes/macrophages and LAMP3+ cDC cells were enriched and mediated the immunosuppression via inhibitory interactions with malignant T cells, such as CD47-SIRPA, MIF-CD74, and CCR1-CCL18. Notably, elevated expressions of S100A9 and its receptor TLR4, as well as the activation of downstream toll-like receptor and NF-κB pathway were observed in both malignant cells and myeloid cells in CTCL. Cell co-culture experiments further confirmed that the interaction between malignant CTCL cells and macrophages contributed to tumor growth via S100A9 upregulation and NF-kb activation. Our results showed that blocking the S100A9-TLR4 interaction using tasquinimod could inactivate the NF-κB pathway and inhibit the growth of CTCL tumor cells, and trigger cell apoptosis. Collectively, our study revealed a landscape of immunosuppressive TME mediated by interactions between malignant T cells and myeloid cells, and provided novel targets and potential treatment strategies for advanced CTCL patients.


Subject(s)
Lymphoma, T-Cell, Cutaneous , Skin Neoplasms , Humans , NF-kappa B/genetics , DNA Copy Number Variations , Toll-Like Receptor 4/genetics , Skin Neoplasms/pathology , Lymphoma, T-Cell, Cutaneous/genetics , Lymphoma, T-Cell, Cutaneous/drug therapy , Lymphoma, T-Cell, Cutaneous/pathology , Myeloid Cells/metabolism , Immunosuppression Therapy , Sequence Analysis, RNA , Tumor Microenvironment
16.
Cell Discov ; 8(1): 102, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36202798

ABSTRACT

Targeted cancer therapies have revolutionized treatment but their efficacies are limited by the development of resistance driven by clonal evolution within tumors. We developed "CAPTURE", a single-cell barcoding approach to comprehensively trace clonal dynamics and capture live lineage-coupled resistant cells for in-depth multi-omics analysis and functional exploration. We demonstrate that heterogeneous clones, either preexisting or emerging from drug-tolerant persister cells, dominated resistance to vemurafenib in BRAFV600E melanoma. Further integrative studies uncovered diverse resistance mechanisms. This includes a previously unrecognized and clinically relevant mechanism, chromosome 18q21 gain, which leads to vulnerability of the cells to BCL2 inhibitor. We also identified targetable common dependencies of captured resistant clones, such as oxidative phosphorylation and E2F pathways. Our study provides new therapeutic insights into overcoming therapy resistance in BRAFV600E melanoma and presents a platform for exploring clonal evolution dynamics and vulnerabilities that can be applied to study treatment resistance in other cancers.

17.
J Hematol Oncol ; 15(1): 137, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36183093

ABSTRACT

BACKGROUND: Circulating tumor DNA (ctDNA) has been proven as a marker for detecting minimal residual diseases following systemic therapies in mid-to-late-stage non-small-cell lung cancers (NSCLCs) by multiple studies. However, fewer studies cast light on ctDNA-based MRD monitoring in early-to-mid-stage NSCLCs that received surgical resection as the standard of care. METHODS: We prospectively recruited 128 patients with stage I-III NSCLCs who received curative surgical resections in our Lung Cancer Tempo-spatial Heterogeneity prospective cohort. Plasma samples were collected before the surgery, 7 days after the surgery, and every 3 months thereafter. Targeted sequencing was performed on a total of 628 plasma samples and 645 matched tumor samples using a panel covering 425 cancer-associated genes. Tissue clonal phylogeny of each patient was reconstructed and used to guide ctDNA detection. RESULTS: The results demonstrated that ctDNA was more frequently detected in patients with higher stage diseases pre- and postsurgery. Positive ctDNA detection at as early as 7 days postsurgery identified high-risk patients with recurrence (HR = 3.90, P < 0.001). Our results also show that longitudinal ctDNA monitoring of at least two postsurgical time points indicated a significantly higher risk (HR = 7.59, P < 0.001), preceding radiographic relapse in 73.5% of patients by a median of 145 days. Further, clonal ctDNA mutations indicated a high-level specificity, and subclonal mutations informed the origin of tumor recurrence. CONCLUSIONS: Longitudinal ctDNA surveillance integrating clonality information may stratify high-risk patients with disease recurrence and infer the evolutionary origin of ctDNA mutations.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/surgery , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/surgery , Mutation , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neoplasm, Residual , Prospective Studies
18.
Front Oncol ; 12: 941657, 2022.
Article in English | MEDLINE | ID: mdl-36059614

ABSTRACT

Treatment-resistant glioma stem cells are thought to propagate and drive growth of malignant gliomas, but their markers and our ability to target them specifically are not well understood. We demonstrate that podoplanin (PDPN) expression is an independent prognostic marker in gliomas across multiple independent patient cohorts comprising both high- and low-grade gliomas. Knockdown of PDPN radiosensitized glioma cell lines and glioma-stem-like cells (GSCs). Clonogenic assays and xenograft experiments revealed that PDPN expression was associated with radiotherapy resistance and tumor aggressiveness. We further demonstrate that knockdown of PDPN in GSCs in vivo is sufficient to improve overall survival in an intracranial xenograft mouse model. PDPN therefore identifies a subset of aggressive, treatment-resistant glioma cells responsible for radiation resistance and may serve as a novel therapeutic target.

19.
Cancer Discov ; 12(12): 2820-2837, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36122307

ABSTRACT

Isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) has a dismal prognosis. A better understanding of tumor evolution holds the key to developing more effective treatment. Here we study GBM's natural evolutionary trajectory by using rare multifocal samples. We sequenced 61,062 single cells from eight multifocal IDH wild-type primary GBMs and defined a natural evolution signature (NES) of the tumor. We show that the NES significantly associates with the activation of transcription factors that regulate brain development, including MYBL2 and FOSL2. Hypoxia is involved in inducing NES transition potentially via activation of the HIF1A-FOSL2 axis. High-NES tumor cells could recruit and polarize bone marrow-derived macrophages through activation of the FOSL2-ANXA1-FPR1/3 axis. These polarized macrophages can efficiently suppress T-cell activity and accelerate NES transition in tumor cells. Moreover, the polarized macrophages could upregulate CCL2 to induce tumor cell migration. SIGNIFICANCE: GBM progression could be induced by hypoxia via the HIF1A-FOSL2 axis. Tumor-derived ANXA1 is associated with recruitment and polarization of bone marrow-derived macrophages to suppress the immunoenvironment. The polarized macrophages promote tumor cell NES transition and migration. This article is highlighted in the In This Issue feature, p. 2711.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Isocitrate Dehydrogenase/genetics , Prognosis , Hypoxia/genetics
20.
Nat Commun ; 13(1): 4410, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906213

ABSTRACT

Molecular classification has improved diagnosis and treatment for patients with malignant gliomas. However, classification has relied on individual assays that are both costly and slow, leading to frequent delays in treatment. Here, we propose the use of DNA methylation, as an emerging clinical diagnostic platform, to classify gliomas based on major genomic alterations and provide insight into subtype characteristics. We show that using machine learning models, DNA methylation signatures can accurately predict somatic alterations and show improvement over existing classifiers. The established Unified Diagnostic Pipeline (UniD) we develop is rapid and cost-effective for genomic alterations and gene expression subtypes diagnostic at early clinical phase and improves over individual assays currently in clinical use. The significant relationship between genetic alteration and epigenetic signature indicates broad applicability of our approach to other malignancies.


Subject(s)
DNA Methylation , Glioma , DNA Methylation/genetics , Epigenesis, Genetic , Epigenomics , Glioma/genetics , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...