Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Neurobiol Dis ; 197: 106527, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38740347

ABSTRACT

BACKGROUND: Neurotransmitter deficits and spatial associations among neurotransmitter distribution, brain activity, and clinical features in Parkinson's disease (PD) remain unclear. Better understanding of neurotransmitter impairments in PD may provide potential therapeutic targets. Therefore, we aimed to investigate the spatial relationship between PD-related patterns and neurotransmitter deficits. METHODS: We included 59 patients with PD and 41 age- and sex-matched healthy controls (HCs). The voxel-wise mean amplitude of the low-frequency fluctuation (mALFF) was calculated and compared between the two groups. The JuSpace toolbox was used to test whether spatial patterns of mALFF alterations in patients with PD were associated with specific neurotransmitter receptor/transporter densities. RESULTS: Compared to HCs, patients with PD showed reduced mALFF in the sensorimotor- and visual-related regions. In addition, mALFF alteration patterns were significantly associated with the spatial distribution of the serotonergic, dopaminergic, noradrenergic, glutamatergic, cannabinoid, and acetylcholinergic neurotransmitter systems (p < 0.05, false discovery rate-corrected). CONCLUSIONS: Our results revealed abnormal brain activity patterns and specific neurotransmitter deficits in patients with PD, which may provide new insights into the mechanisms and potential targets for pharmacotherapy.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/metabolism , Parkinson Disease/physiopathology , Male , Female , Middle Aged , Aged , Brain/metabolism , Magnetic Resonance Imaging/methods , Neurotransmitter Agents/metabolism , Multimodal Imaging/methods
3.
Quant Imaging Med Surg ; 13(12): 7866-7878, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38106335

ABSTRACT

Background: Caffeine is the most widely consumed psychostimulant. Despite this, the effects of acute caffeine intake on brain metabolite levels remain largely unknown. We aimed to investigate the effect of acute caffeine intake on brain metabolite concentrations in different caffeine consumption habit groups and to explore the association between metabolite changes and sleepiness. Methods: Forty-five healthy adults were divided into groups based on their daily caffeine consumption: ≥1 cup/day, <1 cup/day, and no consumption. The exclusion criteria were the presence of neurological disorder, habitual consumption of mind-altering substances, and individuals who were unable to undergo magnetic resonance imaging. Mescher-Garwood point resolved spectroscopy and conventional spectroscopy data were acquired at 3 Tesla from voxels in the thalamus and posterior cingulate cortex (PCC). Subjective sleepiness was measured with the Karolinska Sleepiness Scale. Results: The results of two-way repeated measures analysis of variance indicated a significant interaction effect between time and group for glutamate, glycerylphosphocholine and phosphocholine (GPC + PCH), myo-inositol, glutamate + glutamine (Glx), and creatine and phosphocreatine (Cr + PCr) of the thalamus (all P<0.01), and glutamate (P<0.0001), GPC + PCH (P=0.016), and Glx (P<0.0001) of the PCC. The change between pre- and post-caffeine intake results with significant reductions in γ-aminobutyric acid-positive macromolecule (GABA+) (thalamus, P=0.011), Glx (thalamus, P=0.002), glutamate (PCC, P<0.0001), and significant increments in GPC + PCH (thalamus, P=0.012 and PCC, P<0.0001), myo-inositol (thalamus, P=0.009), and Glx (PCC, P<0.0001). The change among the groups, with the ≥1 cup/day was significantly higher than the <1 cup/day or no consumption for glutamate (PCC, P=0.028), GPC (thalamus, P=0.001; PCC, P=0.026), and Cr + PCr (PCC, P=0.035); ≥1 cup/day was significantly lower than <1 cup/day and no consumption for glutamate (thalamus, P<0.0001), Cr + PCr (thalamus, P=0.003), Glx (thalamus, P=0.014), and myo-inositol (PCC, P=0.009). Bivariate correlation analysis revealed that GABA+ in the thalamus voxel (r=-0.7676; P<0.0001) was negatively correlated with subjective sleepiness. Conclusions: Higher caffeine consumption had a significant impact on brain metabolites. Magnetic resonance spectroscopy was sensitive in measuring brain metabolite fluctuations after caffeine intake, particularly the levels of GABA+ in the thalamus, which was significantly correlated with sleepiness.

4.
Life (Basel) ; 13(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37511839

ABSTRACT

(1) Background: Inflammatory bowel diseases are complex and multifactorial disorders of unknown etiology. The extravasation of activated leukocytes is a critical step in the pathogenesis of these diseases. Leukocyte integrin Mac-1 (αMß2; CD11b/CD18) is crucial for the extravasation of myeloid cells, and a novel activation-specific anti-Mac-1 Designed Ankyrin Repeat protein (DARPin F7) is a promising therapeutic agent for inflammatory diseases. In its activated conformation, Mac-1 expresses the high-affinity binding site I-domain, which the DARPin F7 selectively targets. In our study, we aimed to explore the therapeutic potential of anti-Mac-1 DARPin F7 in murine dextrane sodium sulfate (DSS)-induced colitis. (2) Methods: C57BL/6J mice received 3% DSS drinking water for five days, followed by normal drinking water for one week. The mice were treated with DARPin F7 or a control substance daily via intraperitoneal injections. Disease activity index (DAI), colon length, myeloperoxidase (MPO) activity measurements, H&E staining, and qRT-PCR were conducted after euthanizing the mice on day 12. (3) Results: Treatment with DARPin F7 resulted in less pronounced colon shortening and significantly lower histological scores. The DARPin F7-treated animals experienced substantially less disease and myeloperoxidase (MPO) activity. Animals that received DARPin F7 treatment suffered less weight loss and recovered from the weight loss more efficiently. Treatment with DARPin F7 also led to significantly reduced mRNA expression of inflammatory cytokines. (4) Conclusion: Anti-Mac-1 treatment markedly reduced disease activity and inflammatory reaction accompanying DSS-induced colitis in mice.

5.
Front Neurosci ; 17: 1184440, 2023.
Article in English | MEDLINE | ID: mdl-37255748

ABSTRACT

Introduction: Despite verifying proton magnetic resonance spectroscopy (1H-MRS) for focal localization in magnetic resonance imaging (MRI)-negative temporal lobe epilepsy (TLE), it is necessary to illustrate metabolic changes and screen for effective biomarkers for monitoring therapeutic effect. We used 1H-MRS to investigate the role of metabolic levels in MRI-negative TLE. Materials and methods: Thirty-seven patients (n = 37, 14 women) and 20 healthy controls (n = 20, 11 women) were investigated by 1H-MRS. We compared the metabolite level changes in the epileptic and contralateral sides on the mesial temporal and dorsolateral prefrontal cortices and analyzed their association with clinical symptoms. Results: γ-Aminobutyric acid (GABA) levels were significantly lower on the epileptic side (2.292 ± 0.890) than in the contralateral side (2.662 ± 0.742, p = 0.029*) in patients on the mesial temporal lobe. N-acetylaspartate (NAA) levels were significantly lower on the epileptic side (7.284 ± 1.314) than on the contralateral side (7.655 ± 1.549, p = 0.034*). NAA + N-acetylaspartylglutamate levels were significantly lower on the epileptic side (7.668 ± 1.406) than on the contralateral side (8.086 ± 1.675, p = 0.032*). Glutamate levels were significantly lower on the epileptic side (7.773 ± 1.428) than on the contralateral side (8.245 ± 1.616, p = 0.040*). Moreover, a significant negative correlation was found between GABA levels in the epileptic mesial temporal lobe and tonic-clonic seizure frequency (r = -0.338, p = 0.046*). Conclusion: γ-Aminobutyric acid (GABA) is a potential biomarker for lateralization and monitoring seizure frequency in MRI-negative TLE.

6.
Technol Health Care ; 31(S1): 357-372, 2023.
Article in English | MEDLINE | ID: mdl-37066936

ABSTRACT

BACKGROUND: 125I BT is an effective radiotherapy for prostate cancer. However, comparison data of GI and GU toxicities between BT, BT + EBRT, and EBRT-alone patient groups is limited. OBJECTIVE: To define the GI and GU toxicities in prostate cancer to prevent adverse events after treatment. METHODS: We searched published studies in PubMed, Cochrane, and Embase databases up to December 31, 2022. The endpoints were the RRs of GI and GU toxicities. Pooled data were assessed using a random-effects model. RESULTS: Fifteen eligible studies were included into this analysis. LDR-BT had significantly lower RRs than LDR-BT + EBRT for acute GI (2.13; 95% CI, 1.22-3.69; P= 0.007) and late GI toxicities (3.96; 95% CI, 1.23-12.70; P= 0.02). Moreover, EBRT had significantly higher RRs than LDR-BT for acute GU (2.32; 95% CI, 1.29-4.15; P= 0.005) and late GU toxicities (2.38; 95% CI, 1.27-4.44; P= 0.007). HDR-BT had significantly higher RRs for acute GU toxicities than LDR-BT alone (0.30; 95% CI, 0.23-0.40; P< 0.00001). CONCLUSION: The results implied that BT with and without EBRT can result in both GI and GU toxicities in patients with prostate cancer, with LDR-BT leading to a poorer urinary function than EBRT.


Subject(s)
Brachytherapy , Prostatic Neoplasms , Male , Humans , Brachytherapy/adverse effects , Brachytherapy/methods , Iodine Radioisotopes , Prostatic Neoplasms/radiotherapy , Gastrointestinal Tract
SELECTION OF CITATIONS
SEARCH DETAIL