Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(11): 3432-3440, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38391135

ABSTRACT

Uricase-catalyzed uric acid (UA) degradation has been applied for hyperuricemia therapy, but this medication is limited by H2O2 accumulation, which can cause oxidative stress of cells, resulting in many other health issues. Herein, we report a robust cubic hollow nanocage (HNC) system based on polyvinylpyrrolidone-coated PdPt3 and PdIr3 to serve as highly efficient self-cascade uricase/peroxidase mimics to achieve the desired dual catalysis for both UA degradation and H2O2 elimination. These HNCs have hollow cubic shape with average wall thickness of 1.5 nm, providing desired synergy to enhance catalyst's activity and stability. Density functional theory calculations suggest the PdIr3 HNC surface tend to promote OH*/O* desorption for better peroxidase-like catalysis, while the PdPt3 HNC surface accelerates the UA oxidation by facilitating O2-to-H2O2 conversion. The dual catalysis power demonstrated by these HNCs in cell studies suggests their great potential as a new type of nanozyme for treating hyperuricemia.


Subject(s)
Hyperuricemia , Peroxidase , Humans , Peroxidase/therapeutic use , Urate Oxidase/therapeutic use , Povidone/therapeutic use , Hyperuricemia/drug therapy , Hydrogen Peroxide , Uric Acid/metabolism , Oxidoreductases , Coloring Agents
2.
J Colloid Interface Sci ; 641: 386-395, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36940595

ABSTRACT

Spinel bimetallic transition metal oxide anode such as ZnMn2O4, has drawn increasing interest due to attractive bimetal interaction and high theoretical capacity. While it suffers from huge volume expansion and poor ionic/electronic conductivity. Nanosizing and carbon modification can alleviate these issues, while the optimal particle size within host is unclear yet. We here propose an in-situ confinement growth strategy to fabricate pomegranate-structured ZnMn2O4 nanocomposite with calculated optimal particle size in mesoporous carbon host. Theoretical calculations reveal favorable interatomic interactions between the metal atoms. By the synergistic effects of structural merits and bimetal interaction, the optimal ZnMn2O4 composite achieves greatly improved cycling stability (811 mAh g-1 at 0.2 A g-1 after 100 cycles), which can maintain its structural integrity upon cycling. X-ray absorption spectroscopy analysis further confirms delithiated Mn species (Mn2O3 but little MnO). Briefly, this strategy brings new opportunity to ZnMn2O4 anode, which could be adopted to other conversion/alloying-type electrodes.

3.
J Colloid Interface Sci ; 633: 546-554, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36470135

ABSTRACT

Defects engineering has played an ever-increasing important role in electrochemistry, especially secondary lithium batteries. TiO2 is regarded as a promising anode due to its attractive cycling stability, low volume strain and great abundance, while challenges of intrinsic poor electrical and ionic conductivity remain to be addressed. Herein, we report a three-in-one oxygen vacancy (VO)-involved pomegranate design for TiO2-x/C composite anode, which provides highly improved electrical conduction, shortened Li+ pathway and promoted Li+ redox. N-doped mesoporous carbon acts as a robust scaffold to support the whole structure, electron highway and efficient reductant to generate VO on TiO2 nanoparticles during crystallization. Theoretical calculations reveal the crucial role of surface VO on TiO2 in Li electrochemistry. Resultantly, the optimal TiO2-x/C anode achieves significantly enhanced cycling performance (203 mAh/g retained after 2000 cycles at 1 A/g). Postmortem analysis reveals the robustness of VO and reasonable structure stability upon cycles for improved battery performance.


Subject(s)
Carbon , Lithium , Crystallization , Oxygen
4.
Mater Horiz ; 8(2): 471-500, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-34821265

ABSTRACT

Organic electrode materials have been considered as promising candidates for the next generation rechargeable battery systems due to their high theoretical capacity, versatility, and environmentally friendly nature. Among them, organosulfur compounds have been receiving more attention in conjunction with the development of lithium-sulfur batteries. Usually, organosulfide electrodes can deliver a relatively high theoretical capacity based on reversible breakage and formation of disulfide (S-S) bonds. In this review, we provide an overview of organosulfur materials for rechargeable lithium batteries, including their molecular structural design, structure related electrochemical performance study and electrochemical performance optimization. In addition, recent progress of advanced characterization techniques for investigation of the structure and lithium storage mechanism of organosulfur electrodes are elaborated. To further understand the perspective application, the additive effect of organosulfur compounds for lithium metal anodes, sulfur cathodes and high voltage inorganic cathode materials are reviewed with typical examples. Finally, some remaining challenges and perspectives of the organosulfur compounds as lithium battery components are also discussed. This review is intended to serve as general guidance for researchers to facilitate the development of organosulfur compounds.

5.
Angew Chem Int Ed Engl ; 60(40): 22026-22034, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34378281

ABSTRACT

Anionic redox is an effective way to boost the energy density of layer-structured metal-oxide cathodes for rechargeable batteries. However, inherent rigid nature of the TMO6 (TM: transition metals) subunits in the layered materials makes it hardly tolerate the inner strains induced by lattice glide, especially at high voltage. Herein, P2-Na0.8 Mg0.13 [Mn0.6 Co0.2 Mg0.07 □0.13 ]O2 (□: TM vacancy) is designed that contains vacancies in TM sites, and Mg ions in both TM and sodium sites. Vacancies make the rigid TMO6 octahedron become more asymmetric and flexible. Low valence Co2+ /Co3+ redox couple stabilizes the electronic structure, especially at the charged state. Mg2+ in sodium sites can tune the interlayer spacing against O-O electrostatic repulsion. Time-resolved in situ X-ray diffraction confirms that irreversible structure evolution is effectively suppressed during deep desodiation benefiting from the specific configuration. X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations demonstrate that, deriving from the intrinsic vacancies, multiple local configurations of "□-O-□", "Na-O-□", "Mg-O-□" are superior in facilitating the oxygen redox for charge compensation than previously reported "Na-O-Mg". The resulted material delivers promising cycle stability and rate capability, with a long voltage plateau at 4.2 V contributed by oxygen, and can be well maintained even at high rates. The strategy will inspire new ideas in designing highly stable cathode materials with reversible anionic redox for sodium-ion batteries.

6.
Adv Sci (Weinh) ; 8(9): 2004448, 2021 May.
Article in English | MEDLINE | ID: mdl-33977067

ABSTRACT

Electrochemical irreversibility and sluggish mobility of Na+ in the cathode materials result in poor cycle stability and rate capability for sodium-ion batteries. Herein, a new strategy of introducing Mg ions into the hinging sites of Mn-based tunnel-structured cathode material is designed. Highly reversible electrochemical reaction and phase transition in this cathode are realized. The resulted Na0.44Mn0.95Mg0.05O2 with Mg2+ in the hinging Mn-O5 square pyramidal exhibits promising cycle stability and rate capability. At a current density of 2 C, 67% of the initial discharge capacity is retained after 800 cycles (70% at 20 C), much improved than the undoped Na0.44MnO2. The improvement is attribute to the enhanced Na+ diffusion kinetics and the lowered desodiation energy after Mg doping. Highly reversible charge compensation and structure evolution are proved by synchrotron-based X-ray techniques. Differential charge density and atom population analysis of the average electron number of Mn indicate that Na0.44Mn0.95Mg0.05O2 is more electron-abundant in Mn 3d orbits near the Fermi level than that in Na0.44MnO2, leading to higher redox participation of Mn ions.

7.
Adv Mater ; 33(13): e2008194, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33645858

ABSTRACT

Oxygen-redox of layer-structured metal-oxide cathodes has drawn great attention as an effective approach to break through the bottleneck of their capacity limit. However, reversible oxygen-redox can only be obtained in the high-voltage region (usually over 3.5 V) in current metal-oxide cathodes. Here, we realize reversible oxygen-redox in a wide voltage range of 1.5-4.5 V in a P2-layered Na0.7 Mg0.2 [Fe0.2 Mn0.6 □0.2 ]O2 cathode material, where intrinsic vacancies are located in transition-metal (TM) sites and Mg-ions are located in Na sites. Mg-ions in the Na layer serve as "pillars" to stabilize the layered structure during electrochemical cycling, especially in the high-voltage region. Intrinsic vacancies in the TM layer create the local configurations of "□-O-□", "Na-O-□" and "Mg-O-□" to trigger oxygen-redox in the whole voltage range of charge-discharge. Time-resolved techniques demonstrate that the P2 phase is well maintained in a wide potential window range of 1.5-4.5 V even at 10 C. It is revealed that charge compensation from Mn- and O-ions contributes to the whole voltage range of 1.5-4.5 V, while the redox of Fe-ions only contributes to the high-voltage region of 3.0-4.5 V. The orphaned electrons in the nonbonding 2p orbitals of O that point toward TM-vacancy sites are responsible for reversible oxygen-redox, and Mg-ions in Na sites suppress oxygen release effectively.

8.
Angew Chem Int Ed Engl ; 59(40): 17504-17510, 2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32602633

ABSTRACT

Amorphous iron phosphate (FePO4 ) has attracted enormous attention as a promising cathode material for sodium-ion batteries (SIBs) because of its high theoretical specific capacity and superior electrochemical reversibility. Nevertheless, the low rate performance and rapid capacity decline seriously hamper its implementation in SIBs. Herein, we demonstrate a sagacious multi-step templating approach to skillfully craft amorphous FePO4 yolk-shell nanospheres with mesoporous nanoyolks supported inside the robust porous outer nanoshells. Their unique architecture and large surface area enable these amorphous FePO4 yolk-shell nanospheres to manifest remarkable sodium storage properties with high reversible capacity, outstanding rate performance, and ultralong cycle life.

9.
Angew Chem Int Ed Engl ; 59(34): 14511-14516, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32500971

ABSTRACT

P2-type layered oxides suffer from an ordered Na+ /vacancy arrangement and P2→O2/OP4 phase transitions, leading them to exhibit multiple voltage plateaus upon Na+ extraction/insertion. The deficient sodium in the P2-type cathode easily induces the bad structural stability at deep desodiation states and limited reversible capacity during Na+ de/insertion. These drawbacks cause poor rate capability and fast capacity decay in most P2-type layered oxides. To address these challenges, a novel high sodium content (0.85) and plateau-free P2-type cathode-Na0.85 Li0.12 Ni0.22 Mn0.66 O2 (P2-NLNMO) was developed. The complete solid-solution reaction over a wide voltage range ensures both fast Na+ mobility (10-11 to 10-10  cm2 s-1 ) and small volume variation (1.7 %). The high sodium content P2-NLNMO exhibits a higher reversible capacity of 123.4 mA h g-1 , superior rate capability of 79.3 mA h g-1 at 20 C, and 85.4 % capacity retention after 500 cycles at 5 C. The sufficient Na and complete solid-solution reaction are critical to realizing high-performance P2-type cathodes for sodium-ion batteries.

10.
ACS Appl Mater Interfaces ; 11(26): 23213-23221, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31184473

ABSTRACT

LiNi0.8Co0.15Al0.05O2 (NCA) has been proven to be a good cathode material for lithium-ion batteries (LIBs), especially in electric vehicle applications. However, further elevating energy density of NCA is very challenging. Increasing the charging voltage of NCA is an effective method, but its structural instability remains a problem. In this work, we revealed that titanium substitution could improve cycle stability of NCA under high cutoff voltage significantly. Titanium ions with a relatively larger ion radius could modify the oxygen lattice and change the local coordination environment of NCA, leading to decreased cation migration, better kinetic and thermodynamic properties, and improved structural stability. As a result, the Ti-substituted NCA cathode exhibits impressive reversible capacity (198 mA h g-1 at 0.1C) with considerable cycle stability under a cutoff voltage up to 4.7 V. It is also revealed that Ti could suppress oxygen release in the high-voltage region, benefitting cycle and thermal stabilities. This work provides valuable insight into the design of high-voltage layered cathode materials for high-energy-density LIBs.

11.
J Am Chem Soc ; 141(2): 840-848, 2019 Jan 16.
Article in English | MEDLINE | ID: mdl-30562030

ABSTRACT

Most P2-type layered oxides suffer from multiple voltage plateaus, due to Na+/vacancy-order superstructures caused by strong interplay between Na-Na electrostatic interactions and charge ordering in the transition metal layers. Here, Mg ions are successfully introduced into Na sites in addition to the conventional transition metal sites in P2-type Na0.7[Mn0.6Ni0.4]O2 as new cathode materials for sodium-ion batteries. Mg ions in the Na layer serve as "pillars" to stabilize the layered structure, especially for high-voltage charging, meanwhile Mg ions in the transition metal layer can destroy charge ordering. More importantly, Mg ion occupation in both sodium and transition metal layers will be able to create "Na-O-Mg" and "Mg-O-Mg" configurations in layered structures, resulting in ionic O 2p character, which allocates these O 2p states on top of those interacting with transition metals in the O-valence band, thus promoting reversible oxygen redox. This innovative design contributes smooth voltage profiles and high structural stability. Na0.7Mg0.05[Mn0.6Ni0.2Mg0.15]O2 exhibits superior electrochemical performance, especially good capacity retention at high current rate under a high cutoff voltage (4.2 V). A new P2 phase is formed after charge, rather than an O2 phase for the unsubstituted material. Besides, multiple intermediate phases are observed during high-rate charging. Na-ion transport kinetics are mainly affected by elemental-related redox couples and structural reorganization. These findings will open new opportunities for designing and optimizing layer-structured cathodes for sodium-ion batteries.

12.
Adv Sci (Weinh) ; 4(11): 1700219, 2017 11.
Article in English | MEDLINE | ID: mdl-29201619

ABSTRACT

Developing sodium-ion batteries for large-scale energy storage applications is facing big challenges of the lack of high-performance cathode materials. Here, a series of new cathode materials Na0.66Co x Mn0.66-x Ti0.34O2 for sodium-ion batteries are designed and synthesized aiming to reduce transition metal-ion ordering, charge ordering, as well as Na+ and vacancy ordering. An interesting structure change of Na0.66Co x Mn0.66-x Ti0.34O2 from orthorhombic to hexagonal is revealed when Co content increases from x = 0 to 0.33. In particular, Na0.66Co0.22Mn0.44Ti0.34O2 with a P2-type layered structure delivers a reversible capacity of 120 mAh g-1 at 0.1 C. When the current density increases to 10 C, a reversible capacity of 63.2 mAh g-1 can still be obtained, indicating a promising rate capability. The low valence Co2+ substitution results in the formation of average Mn3.7+ valence state in Na0.66Co0.22Mn0.44Ti0.34O2, effectively suppressing the Mn3+-induced Jahn-Teller distortion, and in turn stabilizing the layered structure. X-ray absorption spectroscopy results suggest that the charge compensation of Na0.66Co0.22Mn0.44Ti0.34O2 during charge/discharge is contributed by Co2.2+/Co3+ and Mn3.3+/Mn4+ redox couples. This is the first time that the highly reversible Co2+/Co3+ redox couple is observed in P2-layered cathodes for sodium-ion batteries. This finding may open new approaches to design advanced intercalation-type cathode materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...