Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.521
Filter
1.
J Mater Chem B ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38845588

ABSTRACT

Cancer immunotherapy, as an emerging approach to cancer treatment, has tremendous potential for application. Compared to traditional methods such as surgery, chemotherapy, and radiation therapy, it has the ability to restore the patient's immune system, leading to long-term immune memory with less damage to normal tissues. However, immunotherapy has its limitations, including limited therapeutic efficacy, restricted patient populations, and inconsistent treatment responses. Finding effective immunotherapeutic approaches has become a key focus of its clinical application. The adenosine pathway is a recently discovered tumor immune regulatory signaling pathway. It can influence the metabolism and growth of tumor cells by acting through key enzymes in the adenosine pathway, thereby affecting the development of tumors. Therefore, inhibiting the adenosine pathway is an effective cancer immunotherapy. Common adenosine pathway inhibitors include small molecules and antibody proteins, and extensive preclinical trials have demonstrated their effectiveness in inhibiting tumor growth. The short half-life, low bioavailability, and single administration route of adenosine pathway inhibitors limit their clinical application. With the advent of nanotechnology, nano-delivery of adenosine pathway inhibitors has addressed these issues. Compared to traditional drugs, nano-drugs extend the drug's circulation time and improve its distribution within the body. They also offer targeting capabilities and have low toxic side effects, making them very promising for future applications. In this review, we discuss the mechanism of the adenosine pathway in tumor immune suppression, the clinical applications of adenosine pathway inhibitors, and nano-delivery based on adenosine pathway inhibitors. In the final part of this article, we also briefly discuss the technical issues and challenges currently present in nano-delivery of adenosine pathway inhibitors, with the hope of advancing the progress of adenosine inhibitor nano-drugs in clinical treatment.

2.
Transl Pediatr ; 13(5): 760-769, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38840684

ABSTRACT

Background: In 2023, China witnessed an earlier and more widespread outbreak of Mycoplasma pneumoniae pneumonia (MPP). To address this situation, an online training program was designed to enhance the knowledge of MPP among pediatricians in Shanghai, China. Methods: An online training program on the diagnosis and treatment of MPP, guided by Kern's six-step approach, was developed by the Shanghai Pediatric Clinical Quality Control Center. A pre- and post-training survey was conducted using a 20-item self-administered questionnaire to investigate the pediatricians' knowledge of MPP. A linkage mechanism was established to match pretest/posttest questionnaires using personal identifiers. Paired t-tests and McNemar tests were performed to measure the differences, as appropriate, between pre- and post-training groups. A higher survey score indicated better knowledge. Results: There were 289 participants performed pre- and post-tests. The average age of the respondents was 38.7 years (standard deviation: 8.9). Over 80% of the participants were primary (32.5%) and intermediate (47.8%) pediatricians. Those from specialized hospitals accounted for the highest proportion (41.5%). The post-training group achieved significantly higher total scores than the pre-training group (91.3 vs. 67.7, t=22.48, P<0.001), regardless of the professional titles or hospital levels (all P<0.001). The accuracy rates of each question increased significantly in the post-training group (all P<0.001). Conclusions: The online training program effectively enhanced pediatricians' understanding of diagnosing and treating MPP. It is recommended to maintain continuous education and training targeting all healthcare providers.

3.
Opt Lett ; 49(11): 3198-3201, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824362

ABSTRACT

We demonstrate the direct generation of single-frequency switchable orbital angular momentum (OAM) modes in a 1 µm wavelength range using a Nd:YVO4 microchip laser. The 808 nm laser diode pump beam is shaped into annular through an axicon associated with a lens. By adjusting the diameter and power of the annular pump beam, various OAM modes with different mode volumes can oscillate inside the Nd:YVO4 microchip. Moreover, a single-frequency output is also available due to the short cavity of the microchip. In the proof-of-principle experiment, single-frequency twofold multiplexed OAM modes | ± 1> and | ± 2> are generated, with experimentally measured fidelity higher than 96%. This work presents a compact and versatile single-frequency OAM source and will inspire multiple advanced scenarios ranging from classical to quantum photonics.

4.
Appl Opt ; 63(12): 3250-3259, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38856474

ABSTRACT

We have developed and experimentally investigated a long-range 1.645 µm coherent Doppler wind lidar (CDWL) system. A compact 1.645 µm single-frequency Er:YAG laser is utilized as the laser transmitter. The impact of laser transmitter parameters on wind detection was assessed using the figure of merit (FOM) concept. To enhance the measurement efficiency, the influence of wave aberrations on the heterodyne efficiency was analyzed. A Galilean telescope with an optical aperture of 100 mm is designed as the optical antenna based on the analysis. The line of sight (LOS) detection range exceeds 30.42 km with a data rate of 1 Hz at an elevation angle of 3.5°. To evaluate the effectiveness of the CDWL, comparison experiments were conducted between the 1.645 µm CDWL and a calibrated 1.55 µm CDWL, revealing a correlation coefficient of 0.9816 for the whole detection path in the wind velocity measurement.

5.
BMC Pulm Med ; 24(1): 274, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851701

ABSTRACT

BACKGROUND: Lung cancer (LC) commonly occurs in patients with combined pulmonary fibrosis and emphysema (CPFE) and chronic obstructive pulmonary disease (COPD), but comparative research is limited. This study examines clinical characteristics, treatments, and prognosis in LC patients with CPFE or COPD. METHODS: The retrospective study involved 75 lung cancer patients with CPFE and 182 with COPD. It analyzed clinical features, tumor pathology, pulmonary function, laboratory parameters, and treatment responses. RESULTS: Notable differences were found between the CPFE + LC and COPD + LC groups. Both groups were mostly elderly, male smokers. The CPFE + LC group had higher BMI and more adenocarcinoma and squamous cell carcinoma, while COPD + LC had predominantly squamous cell carcinoma. CPFE + LC tumors were mostly in the lower lobes; COPD + LC's were in the upper lobes. The CPFE + LC group showed higher tumor metastasis rates, more paraseptal emphysema, and elevated levels of TG, CEA, NSE, and Killer T Cells. In advanced stages (IIIB-IV), the CPFE + LC group receiving first-line treatment had shorter median progression-free survival (PFS) and a higher risk of progression or death than the COPD + LC group, regardless of whether it was non-small cell lung cancer (NSCLC) or small cell lung cancer (SCLC). No significant PFS difference was found within CPFE + LC between chemotherapy and immunotherapy, nor in immune-related adverse events between groups, with interstitial pneumonia being common. CONCLUSION: This study emphasizes distinct lung cancer characteristics in CPFE or COPD patients, highlighting the need for tailored diagnostic and treatment approaches. It advocates for further research to improve care for this high-risk group.


Subject(s)
Lung Neoplasms , Pulmonary Disease, Chronic Obstructive , Humans , Male , Retrospective Studies , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Lung Neoplasms/mortality , Female , Aged , Middle Aged , Prognosis , Pulmonary Fibrosis , Pulmonary Emphysema , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/mortality , Aged, 80 and over , Progression-Free Survival , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/therapy
6.
Cell Mol Life Sci ; 81(1): 262, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878186

ABSTRACT

Through Smad3-dependent signalings, transforming growth factor-ß (TGF-ß) suppresses the development, maturation, cytokine productions and cytolytic functions of NK cells in cancer. Silencing Smad3 remarkably restores the cytotoxicity of NK-92 against cancer in TGF-ß-rich microenvironment, but its effects on the immunoregulatory functions of NK cells remain obscure. In this study, we identified Smad3 functioned as a transcriptional repressor for CSF2 (GM-CSF) in NK cells. Therefore, disrupting Smad3 largely mitigated TGF-ß-mediated suppression on GM-CSF production by NK cells. Furthermore, silencing GM-CSF in Smad3 knockout NK cells substantially impaired their anti-lung carcinoma effects. In-depth study demonstrated that NK-derived GM-CSF strengthened T cell immune responses by stimulating dendritic cell differentiation and M1 macrophage polarization. Meanwhile, NK-derived GM-CSF promoted the survival of neutrophils, which in turn facilitated the terminal maturation of NK cells, and subsequently boosted NK-cell mediated cytotoxicity against lung carcinoma. Thus, Smad3-silenced NK-92 (NK-92-S3KD) may serve as a promising immunoadjuvant therapy with clinical translational value given its robust cytotoxicity against malignant cells and immunostimulatory functions to reinforce the therapeutic effects of other immunotherapies.


Subject(s)
Granulocyte-Macrophage Colony-Stimulating Factor , Killer Cells, Natural , Lung Neoplasms , Smad3 Protein , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Smad3 Protein/metabolism , Smad3 Protein/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Animals , Humans , Mice , Mice, Inbred C57BL , Cell Line, Tumor , Dendritic Cells/immunology , Dendritic Cells/metabolism , Transforming Growth Factor beta/metabolism , Cell Differentiation , Macrophages/metabolism , Macrophages/immunology , Signal Transduction
7.
Asian J Psychiatr ; 97: 104093, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823080

ABSTRACT

BACKGROUND: Childhood maltreatment (CM) is a well-established risk factor for major depressive disorder (MDD). The neural mechanisms linking childhood maltreatment experiences to changes in brain functional networks and the onset of depression are not fully understood. METHODS: In this study, we enrolled 66 patients with MDD and 31 healthy controls who underwent resting-state fMRI scans and neuropsychological assessments. We employed multivariate linear regression to examine the neural associations of CM and depression, specifically focusing on the bilateral occipital functional connectivity (OFC) networks relevant to MDD. Subsequently, a two-step mediation analysis was conducted to assess whether the OFC network mediated the relationship between CM experiences and the severity of depression. RESULTS: Our study showed that patients with MDD exhibited reduced OFC strength, particularly in the occipito-temporal, parietal, and premotor regions. These reductions were negatively correlated with CM scores and the severity of depression. Notably, the overlapping regions in the bilateral OFC networks, affected by both CM experiences and depressive severity, were primarily observed in the bilateral cuneus, left angular and calcarine, as well as the right middle frontal cortex and superior parietal cortex. Furthermore, the altered strengths of the OFC networks were identified as positive mediators of the impact of CM history on depression symptoms in patients with MDD. CONCLUSION: We have demonstrated that early exposure to CM may increase vulnerability to depression by influencing the brain's network. These findings provide new insights into understanding the pathological mechanism underlying depressive symptoms induced by CM.


Subject(s)
Depressive Disorder, Major , Magnetic Resonance Imaging , Nerve Net , Humans , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Male , Female , Adult , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Occipital Lobe/physiopathology , Occipital Lobe/diagnostic imaging , Connectome , Adult Survivors of Child Abuse , Middle Aged , Young Adult
8.
Adv Mater ; : e2406366, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38870394

ABSTRACT

Alkaline zinc-iron flow batteries (AZIFBs) are well suited for energy storage because of their good safety, high cell voltage, and low cost. However, the occurrence of irreversible anodic parasitic reactions results in a diminished coulombic efficiency (CE), unbalanced charge state of catholyte/anolyte and subsequently, a poor cycling performance. Here, we report a universal CE compensation strategy centered around the oxygen evolution reaction (OER) on the cathodic side. This strategy aims to equalize the charge state of the [Fe(CN)6]3-/4--based catholyte and counteract pH fluctuations. The OER process can be implemented either directly on the electrode through electrochemical reaction or in an external catalytic reactor column via a redox-mediated process. This innovative approach effectively mitigates the gradual accumulation of [Fe(CN)6]3- in discharged catholyte and [Zn(OH)4]2- in charged anolyte by consuming the extra OH- during continuous cycling process. As a result, AZIFBs demonstrated exceptional cycling performance with an extremely low capacity fading rate of 0.0128%/day (or 0.0005%/cycle) over 600 cycles at 80% state of charge (SOC). The proposed CE compensation strategy not only provides an effective way to address the CE loss issue for AZIFBs but can also be applied to diverse battery technologies encountering CE loss caused by water/oxygen-induced parasitic reactions. This article is protected by copyright. All rights reserved.

9.
J Hazard Mater ; 475: 134769, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38870849

ABSTRACT

Microplastics (MPs) are widely distributed in the sea, but the vertical transfer of MPs by marine organisms in coastal area is still poorly understood. In this study, we used laser direct infrared (LDIR) spectroscopy to determine the number and characteristics of MPs deposited by cultured oyster Crassostrea gigas and further compared the differences between MPs of natural deposit and biodeposit in field environments. The amounts of MPs found in the biodeposit of cultured oysters were 3.54 times greater than that in the natural deposition. The polymer types of biodeposit MPs also differed from those of natural deposition. It was estimated that a single oyster can deposit 15.88 MPs per day, which is a figure much higher than the initial results, and hotspots of MPs deposition may be formed within the oyster aquaculture area. We used generalized linear mixed model (GLMM) to further infer the sources of MPs in sediments and found that distance to shore, cultured zone and urban center were important predictors of MPs abundance in sediments of aquaculture area. The above results suggest that cultured bivalves have an important capacity for MPs biodeposition and will further change the vertical distribution pattern of MPs in coastal environments.

10.
Cell Biochem Biophys ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872051

ABSTRACT

Hepatocellular carcinoma (HCC) is one of most prevalent malignant tumors with poor prognosis and a high mortality rate. Recent research indicates that N6-methyladenosine (m6A) and tumor immunotherapy are important factors in HCC. More research is still needed to fully understand the profound roles that m6A writer Wilms tumor 1-associated protein (WTAP) and CD8+ T cells play in the antitumor immunity that prevents HCC from progressing. According to the findings of our investigation, WTAP was significantly elevated in HCC cells and was associated with a poor prognosis. Functionally, WTAP accelerated HCC immune evasion and aerobic glycolysis while suppressing the tumor-killing ability of CD8+ T cells. On the other hand, WTAP knockdown had the opposite effect. WTAP targets the m6A site on the 3'-UTR of PD-L1 mRNA, which mechanistically increases the stability of PD-L1 mRNA. These results showed that WTAP inhibited CD8+ T cells' antitumor activity, which in turn deteriorated HCC immune evasion and aerobic glycolysis. In conclusion, our research uncovers a novel mechanism for WTAP on the tumor-killing ability of CD8+ T cells, which helps to overcome HCC immune evasion.

11.
J Dent ; : 105133, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880468

ABSTRACT

OBJECTIVES: The objective of this study was to analyze the occlusal contact characteristics of the food-impacted teeth using a new digital technique. METHODS: A 3D occlusal analysis method was developed for studying the occlusal contact characteristics of teeth affected by food impaction. In this self-controlled study, food-impacted molars from 20 participants constituted the experimental group. The corresponding healthy teeth on the opposite side served as the control group. Variables such as occlusal force (OF), occlusal contact area (OCA), and the number and distribution of occlusal contact points (OCN) in the mesio-distal directions were measured and compared between the two groups. RESULTS: There was no statistical significant difference in the values of OF, OCA and OCN between the food-impacted molars and the healthy control molars (P > 0.05). However, paired T-tests indicated significant difference in the proportion of mesial OF, OCA, and OCN in the second molars of the experimental group (0.22, 0.28 and 0.28, respectively). The corresponding values for the second molars of the control group were 0.66, 0.63, and 0.63 respectively (P < 0.001). CONCLUSIONS: The abnormal distribution of occlusal contacts in the second molar, primarily characterized by excessive occlusal contact in the distal direction may contribute to the occurrence of food impaction. CLINICAL SIGNIFICANCE: The present study identified variations in the distribution of occlusal contacts and occlusal component force in food-impacted teeth. These findings can assist dentists in making more targeted occlusal adjustments, or applying other treatment modalities, to effectively address food impaction.

12.
Int J Nanomedicine ; 19: 5125-5138, 2024.
Article in English | MEDLINE | ID: mdl-38855730

ABSTRACT

Purpose: Breast cancer is a prevalent malignancy among women worldwide, and malignancy is closely linked to the tumor microenvironment (TME). Here, we prepared mixed nano-sized formulations composed of pH-sensitive liposomes (Ber/Ru486@CLPs) and small-sized nano-micelles (Dox@CLGs). These liposomes and nano-micelles were modified by chondroitin sulfate (CS) to selectively target breast cancer cells. Methods: Ber/Ru486@CLPs and Dox@CLGs were prepared by thin-film dispersion and ethanol injection, respectively. To mimic actual TME, the in vitro "condition medium of fibroblasts + MCF-7" cell model and in vivo "4T1/NIH-3T3" co-implantation mice model were established to evaluate the anti-tumor effect of drugs. Results: The physicochemical properties showed that Dox@CLGs and Ber/Ru486@CLPs were 28 nm and 100 nm in particle size, respectively. In vitro experiments showed that the mixed formulations significantly improved drug uptake and inhibited cell proliferation and migration. The in vivo anti-tumor studies further confirmed the enhanced anti-tumor capabilities of Dox@CLGs + Ber/Ru486@CLPs, including smaller tumor volumes, weak collagen deposition, and low expression levels of α-SMA and CD31 proteins, leading to a superior anti-tumor effect. Conclusion: In brief, this combination therapy based on Dox@CLGs and Ber/Ru486@CLPs could effectively inhibit tumor development, which provides a promising approach for the treatment of breast cancer.


Subject(s)
Breast Neoplasms , Cell Proliferation , Doxorubicin , Liposomes , Tumor Microenvironment , Tumor Microenvironment/drug effects , Animals , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Humans , Mice , Liposomes/chemistry , MCF-7 Cells , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Cell Proliferation/drug effects , Mice, Inbred BALB C , NIH 3T3 Cells , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/pharmacology , Particle Size , Nanoparticle Drug Delivery System/chemistry , Drug Delivery Systems/methods , Cell Movement/drug effects , Nanoparticles/chemistry
13.
Opt Express ; 32(10): 17058-17071, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858898

ABSTRACT

The demand for a high-performance position sensitive detector (PSD), a novel type of photoelectric sensor, is increasing due to advancements in digitization and automation technology. Cadmium sulfide (CdS), a non-centrosymmetric material, holds significant potential in photoelectric devices. However, the pyroelectric effect of CdS in PSDs and its influence on lateral photoresponse are still unknown. In this work, we fabricated an ITO/CdS/Si heterojunction using chemical bath deposition (CBD) and investigated the pyro-phototronic effect under nonuniform illumination. The theory of electron-hole pairs' generation, separation, and carrier diffusion was carefully considered to understand the underlying mechanisms. Our experimental findings revealed that the device exhibited an exceptionally high position sensitivity (PS) of 1061.3 mV/mm, surpassing the generally observed PS of 655.1 mV/mm induced by single photovoltaic effect by 160.5%. Meanwhile, the PSD demonstrated rapid response times of 0.01 and 0.04 ms, respectively. Moreover, the influence of ambient temperature and electrode distance on the pyro-phototronic effect was well analyzed. Notably, the PSD exhibited remarkable stability even at ambient temperatures up to 150 °C. Despite the considerable working distance of 11 mm, the PS of the PSD remained at 128.99 mV/mm. These findings provide valuable theoretical and experimental foundations for optimizing the design and implementation of high-performance large working distance PSDs.

14.
Epigenomics ; : 1-17, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38869474

ABSTRACT

Aim: Liquid biopsies analyzing cell-free DNA (cfDNA) methylation in plasma offer a noninvasive diagnostic for diseases, with the potential of aging biomarkers underexplored. Methods: Utilizing enzymatic methyl-seq (EM-seq), this study assessed cfDNA methylation patterns in aging with blood from 35 healthy individuals. Results: It found aging signatures, including higher cfDNA levels and variations in fragment sizes, plus approximately 2000 age-related differentially methylated CpG sites. A biological age predictive model based on 48 CpG sites showed a strong correlation with chronological age, verified by two datasets. Age-specific epigenetic shifts linked to inflammation were revealed through differentially methylated regions profiling and Olink proteomics. Conclusion: These findings suggest cfDNA methylation as a potential aging biomarker and might exacerbate immunoinflammatory reactivity in older individuals.


Our bodies undergo many changes as we age, some of which might affect our health. To better understand these changes, scientists study something called 'cell-free DNA' (cfDNA) in our blood. This cfDNA can give us clues about our health and the risk of diseases like cancer or heart conditions.In our research, we analyzed cfDNA from the blood of 35 people to identify patterns associated with aging. We discovered that approximately 2000 specific spots in our DNA change in a way that's linked to aging. These changes might help us figure out someone's biological age ­ essentially, how old their body seems based on various health factors, which can differ from their actual age.We also found that these DNA changes could indicate how aging might make the body's defense system ­ which fights off diseases ­ react more intensely. Understanding this could be crucial for managing health as we get older.Our study suggests that cfDNA could be a useful marker for aging, offering a new approach to understanding and possibly managing the health effects associated with growing older.

15.
BMC Complement Med Ther ; 24(1): 227, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862934

ABSTRACT

OBJECTIVE: Endometrial cancer (EC) is an oestrogen-dependent tumour, the occurrence of which is closely related to an imbalance of oestrogen homeostasis. Our previous studies explored the effects of Resveratrol(Res) on oestrogen metabolism. However, systematic research on the exact mechanism of action of Res is still lacking. Based on network pharmacology, molecular docking and animal experiments, the effects and molecular mechanisms of Res on endometrial cancer were investigated. METHODS: The target of Res was obtained from the high-throughput experiment and reference-guided database of TCM (HERB) and the Encyclopedia of Traditional Chinese Medicine (ETCM) databases, and the target of endometrial cancer was obtained by using the Genecards database. Venny map was used to obtain the intersection target of Res in the treatment of endometrial cancer, and the protein interaction network of the intersection target was constructed by importing the data into the STRING database. Then, the drug-disease-target interaction network was constructed based on Cytoscape 3.9.1 software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for intersection targets using the OmicShare cloud platform. Res and core targets were analysed by molecular docking. EC model mice induced by MNNG were randomly divided into the control group, Res group, MNNG group, MNNG + Res group, and MNNG + Res + MAPK/ERKi group. The protein levels of ERK and p-ERK in the mouse uterus were detected by Western blot. The levels of E1, E2, E3, 16-epiE3, 17-epiE3, 2-MeOE1, 4-MeOE1, 2-MeOE2, 4-MeOE2, 3-MeOE1, 2-OHE1, 4-OHE1, 2-OHE2, 4-OHE2, and 16α-OHE1 in the serum and endometrial tissue of mice were measured by LC‒MS/MS. RESULTS: A total of 174 intersection targets of Res anti-endometrial cancer were obtained. The signalling pathways analysed by KEGG enrichment included the AGE-RAGE signalling pathway in diabetic complications, the PI3K-Akt signalling pathway and the MAPK signalling pathway. The top 10 core targets were MAPK3, JUN, TP53, CASP3, TNF, IL1B, AKT1, FOS, VEGFA and INS. Molecular docking showed that in addition to TNF, other targets had good affinity for Res, and the binding activity with MAPK3 was stable. Western blot results showed that Res increased the phosphorylation level of ERK and that MAPK/ERKi decreased ERK activation. In the LC-MS/MS analysis, the levels of 2-MeOE1, 2-MeOE2 and 4-MeOE1 in serum and uterine tissue showed a significantly decreasing trend in the MNNG group, while that of 4-OHE2 was increased (P < 0.05). The concentrations of 4-MeOE1 in serum and 2-MeOE1 and 2-MeOE2 in the endometrial tissue of mice were significantly increased after Res treatment, and those of 4-OHE2 in the serum and uterus of mice were significantly decreased (P < 0.05). Meanwhile, in the MAPK/ERKi intervention group, the effect of Res on the reversal of oestrogen homeostasis imbalance was obviously weakened. CONCLUSION: Res has multiple targets and multiple approaches in the treatment of endometrial cancer. In this study, it was found that Res regulates oestrogen metabolism by activating the MAPK/ERK pathway. This finding provides a new perspective for subsequent research on the treatment of endometrial cancer.


Subject(s)
Endometrial Neoplasms , Estrogens , MAP Kinase Signaling System , Molecular Docking Simulation , Resveratrol , Female , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/metabolism , Animals , Resveratrol/pharmacology , Mice , MAP Kinase Signaling System/drug effects , Estrogens/metabolism , Estrogens/pharmacology , Humans , Mice, Inbred BALB C , Network Pharmacology , Protein Interaction Maps
16.
AMB Express ; 14(1): 65, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842638

ABSTRACT

Microbial degradation of fluorinated compounds raised significant attention because of their widespread distribution and potential environmental impacts. Here, we report a bacterial isolate, Rhodococcus sp. NJF-7 capable of defluorinating monofluorinated medium-chain length alkanes. This isolate consumed 2.29 ± 0.13 mmol L- 1 of 1-fluorodecane (FD) during a 52 h incubation period, resulting in a significant release of inorganic fluoride amounting to 2.16 ± 0.03 mmol L- 1. The defluorination process was strongly affected by the initial FD concentration and pH conditions, with lower pH increasing fluoride toxicity to bacterial cells and inhibiting enzymatic defluorination activity. Stoichiometric conversion of FD to fluoride was observed at neutral pH with resting cells, while defluorination was significantly lower at reduced pH (6.5). The discovery of the metabolites decanoic acid and methyl decanoate suggests that the initial attack by monooxygenases may be responsible for the biological defluorination of FD. The findings here provide new insights into microbial defluorination processes, specifically aiding in understanding the environmental fate of organic semi-fluorinated alkane chemicals.

17.
Ying Yong Sheng Tai Xue Bao ; 35(4): 926-932, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884227

ABSTRACT

To provide a theoretical basis and technical support for the high-yield and high-efficiency production of wheat, we examined the effects of different tillage patterns on wheat grain yield of Jimai 22 and the physiological mechanisms in an experiment with three treatments: 14 years in rotary tillage (R), minimal and no tillage (S), and minimal and no tillage with a 2-year subsoiling interval (SS). We assessed the light interception by wheat plant canopy, the distribution of photosynthate transport, and grain yield for the three cultivation modes. The results showed that leaf area index was significantly higher for SS treatment than the other treatments at 14-28 days after anthesis. The interception rate and amount of photosynthetically active radiation in the upper and middle layers of wheat canopy were significantly higher for SS treatment than R and S treatments at 21 days after anthesis. The contribution rate of grain assimilation and the distribution proportion of 13C assimilated in grain, and the maximum and average filling rates, were the highest under SS treatment. The 1000-kernel weight for SS treatment increased by 8.7% and 9.6%, and the grain yield increased by 14.2% and 19.4% compared with R and S treatments, respectively. SS treatment significantly improved light energy utilization by wheat canopy, promoted the accumulation and transport of dry matter, increased the grain-filling rate, increased grain weight, which together contributed to the highest grain yield. Therefore, SS was the optimal tillage pattern under the conditions of this experiment.


Subject(s)
Agriculture , Biomass , Crop Production , Triticum , Triticum/growth & development , Triticum/metabolism , Agriculture/methods , Crop Production/methods , Edible Grain/growth & development , Carbon Isotopes/analysis
18.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1016-1024, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884236

ABSTRACT

In this study, we explored the changes in plant community diversity and their relationship with soil factors under shrub encroachment pressure by selecting four marsh areas in Sanjiang Plain with different degrees of shrub cover (a, 0≤a≤100%), including marsh with no shrub encroachment (a=0), light shrub encroachment (0

Subject(s)
Biodiversity , Soil , Wetlands , China , Soil/chemistry , Population Dynamics , Poaceae/growth & development , Plants/classification , Plant Development
19.
Anal Chem ; 96(22): 9113-9121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38771353

ABSTRACT

DNA has been implicated as an important biomarker for the diagnosis of bacterial infections. Herein, we developed a streamlined methodology that uses diatom frustules (DFs) to liberate and capture bacterial DNA and allows direct downstream amplification tests without any lysis, washing, or elution steps. Unlike most conventional DNA isolation methods that rely on cell lysis to release bacterial DNA, DFs can trigger the oxidative stress response of bacterial cells to promote bacterial membrane vesicle formation and DNA release by generating reactive oxygen species in aqueous solutions. Due to the hierarchical porous structure, DFs provided high DNA capture efficiency exceeding 80% over a wide range of DNA amounts from 10 pg to 10 ng, making only 10 µg DFs sufficient for each test. Since laborious liquid handling steps are not required, the entire DNA sample preparation process using DFs can be completed within 3 min. The diagnostic use of this DF-based methodology was illustrated, which showed that the DNA of the pathogenic bacteria in serum samples was isolated by DFs and directly detected using polymerase chain reaction (PCR) at concentrations as low as 102 CFU/mL, outperforming the most used approaches based on solid-phase DNA extraction. Furthermore, most of the bacterial cells were still alive after DNA isolation using DFs, providing the possibility of recycling samples for storage and further diagnosis. The proposed DF-based methodology is anticipated to simplify bacterial infection diagnosis and be broadly applied to various medical diagnoses and biological research.


Subject(s)
DNA, Bacterial , Diatoms , DNA, Bacterial/isolation & purification , Diatoms/isolation & purification , Diatoms/chemistry , Humans , Polymerase Chain Reaction , Nucleic Acid Amplification Techniques
20.
Biomed Pharmacother ; 175: 116746, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38739991

ABSTRACT

Brain apoptosis is one of the main causes of epileptogenesis. The antiapoptotic effect and potential mechanism of Q808, an innovative anticonvulsant chemical, have never been reported. In this study, the seizure stage and latency to reach stage 2 of pentylenetetrazol (PTZ) seizure rat model treated with Q808 were investigated. The morphological change and neuronal apoptosis in the hippocampus were detected by hematoxylin and eosin (HE) and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) staining, respectively. The hippocampal transcriptomic changes were observed using RNA sequencing (RNA-seq). The expression levels of hub genes were verified by quantitative reverse-transcription PCR (qRT-PCR). Results revealed that Q808 could allay the seizure score and prolong the stage 2 latency in seizure rats. The morphological changes of neurons and the number of apoptotic cells in the DG area were diminished by Q808 treatment. RNA-seq analysis revealed eight hub genes, including Map2k3, Nfs1, Chchd4, Hdac6, Siglec5, Slc35d3, Entpd1, and LOC103690108, and nine hub pathways among the control, PTZ, and Q808 groups. Hub gene Nfs1 was involved in the hub pathway sulfur relay system, and Map2k3 was involved in the eight remaining hub pathways, including Amyotrophic lateral sclerosis, Cellular senescence, Fc epsilon RI signaling pathway, GnRH signaling pathway, Influenza A, Rap1 signaling pathway, TNF signaling pathway, and Toll-like receptor signaling pathway. qRT-PCR confirmed that the mRNA levels of these hub genes were consistent with the RNA-seq results. Our findings might contribute to further studies exploring the new apoptosis mechanism and actions of Q808.


Subject(s)
Anticonvulsants , Apoptosis , Epilepsy , Gene Expression Profiling , Hippocampus , Pentylenetetrazole , Rats, Sprague-Dawley , Transcriptome , Animals , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Apoptosis/drug effects , Anticonvulsants/pharmacology , Male , Transcriptome/drug effects , Epilepsy/drug therapy , Epilepsy/chemically induced , Epilepsy/genetics , Gene Expression Profiling/methods , Rats , Disease Models, Animal , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Seizures/chemically induced , Seizures/genetics , Seizures/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...