Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Platelets ; 34(1): 2222184, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37292023

ABSTRACT

Although the presence of glycogen in platelets was established in the 1960s, its importance to specific functions (i.e., activation, secretion, aggregation, and clot contraction) remains unclear. Patients with glycogen storage disease often present with increased bleeding and glycogen phosphorylase (GP) inhibitors, when used as treatments for diabetes, induce bleeding in preclinical studies suggesting some role for this form of glucose in hemostasis. In the present work, we examined how glycogen mobilization affects platelet function using GP inhibitors (CP316819 and CP91149) and a battery of ex vivo assays. Blocking GP activity increased glycogen levels in resting and thrombin-activated platelets and inhibited platelet secretion and clot contraction, with minimal effects on aggregation. Seahorse energy flux analysis and metabolite supplementation experiments suggested that glycogen is an important metabolic fuel whose role is affected by platelet activation and the availability of external glucose and other metabolic fuels. Our data shed light on the bleeding diathesis in glycogen storage disease patients and offer insights into the potential effects of hyperglycemia on platelets.


What did we know? Activated platelets transition from a low-energy-requiring, resting state to a high-energy-demanding state.Platelet glycogen is degraded upon activation.Glycogen storage disorders and glycogen phosphorylase inhibitors are associated with bleeding.What did we discover? Glycogen turnover occurs in resting platelets and its degradation is important for platelet functions.Glycogen phosphorylase inhibitors block secretion and clot contraction of which the latter can be reversed with alternative metabolic fuels.Glucose derived from glycogen may be routed through TCA/OxPhos versus aerobic glycolysis.What is the impact? Glycogen breakdown contributes to the high energy requirements of platelet function.Our work offers insights into potential energy sources in activated platelets.


Subject(s)
Glycogen Storage Disease , Glycogenolysis , Thrombosis , Humans , Blood Platelets/metabolism , Glucose/metabolism , Glucose/pharmacology , Glycogen/metabolism , Glycogen/pharmacology , Thrombosis/metabolism , Glycogen Storage Disease/metabolism
2.
Int J Mol Sci ; 24(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36982266

ABSTRACT

The CRISPR/Cas9 system is a robust, efficient, and cost-effective gene editing tool widely adopted in translational studies of ocular diseases. However, in vivo CRISPR-based editing in animal models poses challenges such as the efficient delivery of the CRISPR components in viral vectors with limited packaging capacity and a Cas9-associated immune response. Using a germline Cas9-expressing mouse model would help to overcome these limitations. Here, we evaluated the long-term effects of SpCas9 expression on retinal morphology and function using Rosa26-Cas9 knock-in mice. We observed abundant SpCas9 expression in the RPE and retina of Rosa26-Cas9 mice using the real-time polymerase chain reaction (RT-PCR), Western blotting, and immunostaining. SD-OCT imaging and histological analysis of the RPE, retinal layers, and vasculature showed no apparent structural abnormalities in adult and aged Cas9 mice. Full-field electroretinogram of adult and aged Cas9 mice showed no long-term functional changes in the retinal tissues because of constitutive Cas9 expression. The current study showed that both the retina and RPE maintain their phenotypic and functional features in Cas9 knock-in mice, establishing this as an ideal animal model for developing therapeutics for retinal diseases.


Subject(s)
CRISPR-Cas Systems , Retina , Mice , Animals , Retina/metabolism , Gene Editing/methods , Electroretinography , Genetic Vectors
3.
Res Pract Thromb Haemost ; 6(5): e12755, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35873218

ABSTRACT

Background: Platelet-fibrin clot contraction is critical for wound closure and maintenance of vessel patency, yet a molecular understanding of the process has lagged because of a lack of flexible quantitative assay systems capable of assaying multiple samples simultaneously. Objectives: We devised a sensitive and inexpensive method to assess clot contraction kinetics under multiple conditions. Methods: Clot contraction was measured using time-lapse digital photography, automated image processing with customized software, and detailed kinetic analysis using available commercial programs. Results: Our system was responsive to alterations in platelet counts and calcium, fibrinogen, and thrombin concentrations, and our analysis detected and defined three phases of platelet-fibrin clot formation: initiation, contraction, and stabilization. Lag time, average contraction velocity, contraction extent, and area under the curve were readily calculated from the data. Using pharmacological agents (blebbistatin and eptifibatide), we confirmed the importance of myosin IIA and the interactions of integrin αIIbß3-fibrinogen/fibrin in clot contraction. As further proof of our system's utility, we showed how 2-deoxyglucose affects contraction, demonstrating the importance of platelet bioenergetics, specifically glycolysis. Conclusions: Our system is an adaptable platform for assessing the effects of multiple conditions and interventions on clot contraction kinetics in a regular laboratory setting, using readily available materials. The automated image processing software we developed will be made freely available for noncommercial uses. This assay system can be used to directly compare and define the effects of different treatments or genetic manipulations on platelet function and should provide a robust tool for future hemostasis/thrombosis research and therapeutic development.

4.
Ann Transl Med ; 10(6): 353, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35434038

ABSTRACT

Background: Recent studies have shown that pyroptosis is related to cancer development. Our previous study also found that gasdermins (GSDMs) was associated with the tumor immune microenvironment. Therefore, we wanted to observe the relationship between pyroptosis and the immune microenvironment and prognosis of skin cutaneous melanoma (SKCM). Methods: Pyroptosis-related genes were used for pan-cancer prognostic analysis using the GEPIA2 online analysis website. Prognosis-related genes were clustered using R software and related R packages, and the best clustering results were screened for prognosis analysis. The prognosis-related genes were also used to establish a prognosis-related model. Assess the predictive power of a model by comparing area under the curve (AUC). The t-test was used to analyze the differences of immune-related indicators between the two clusters and between high and low risk groups. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was performed on the differential genes. Results: By clustering the prognosis-related genes, SKCM could be divided into 2 clusters with significant differences in prognosis P<0.05. A prognostic model can be established using prognosis-related genes. The AUC value of 1 year, 2 years and 3 years was 0.696, 0.702 and 0.664, respectively. The risk score was significantly associated with prognosis in both univariate and multivariate Cox analyses P<0.001. The low-risk group or C2 cluster with better prognosis had higher expression of pyroptosis-related genes, and tended to have a lower exclusion score, greater chemokine expression, more immune cells and higher immune score. However, the C2 cluster or low-risk group was also associated with a higher dysfunction score. At the same time, the C2 or low-risk group was more suitable for immunotherapy because of the higher immunophenoscore (IPS) score P<0.001. Correlation analysis also demonstrated that the risk score was positively correlated with the gene expression of most immunoinhibitors, MHC molecules, immunostimulators, and chemokines and their receptors. Conclusions: Pyroptosis is associated with melanoma immune microenvironment, immunotherapy response, and prognoses. The constructed risk scores could effectively predict the characteristics of the immune microenvironment, the sensitivity to immunotherapy, and the prognosis of melanoma patients.

5.
Eur J Radiol ; 143: 109912, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34450516

ABSTRACT

PURPOSE: This study aims to compare the diagnostic performance of two imaging methods for thyroid nodules ≤1.0 cm and reduce unnecessary overdiagnosis. METHODS: A retrospective study was conducted on 80 patients with pathologically confirmed solitary thyroid micronodules underwent both high-resolution ultrasound (HRUS) and High b-value (2000 s/mm2) diffusion weighted imaging (DWI). Intra- and interobserver agreement (Intraclass correlation coefficient) was followed by Kruskal-Wallis test to detect whether the quantitative apparent diffusion coefficient (ADC) and thyroid nodule subgroups were related. Cohen's kappa analysis was applied to assess the interobserver consistency of DWI and HRUS characteristics. The receiver operating characteristic curves were adopted for evaluating the diagnostic performance of thyroid malignancy. The sensitivity, specificity, and accuracy of the two imaging methods were compared using the McNemar's test and Kappa test. RESULTS: A total of 80 patients were included, consisting of 43 malignant and 37 benign micronodules. The sensitivity, specificity and accuracy of DWI combined with rADC (ADCmin to ADCn ratio) for the diagnosis of thyroid micronodules were 83.7%, 89.2% and 86.3%, respectively. The area under the curve (AUC) was 0.91 (95% confidence interval [CI]: 0.84-0.97). The sensitivity, specificity and accuracy of HRUS diagnosis were 100%, 62.16% and 82.5%, respectively. CONCLUSION: High b-value DWI is superior to HRUS for evaluating the diagnostic performance of solid thyroid micronodules. DWI and its ADC quantitative analysis could be added to the evaluation of thyroid micronodules to improve the specificity of diagnosis, reduce overdiagnosis and avoid unnecessary biopsies or surgeries.


Subject(s)
Diffusion Magnetic Resonance Imaging , Thyroid Gland , Diagnosis, Differential , Humans , ROC Curve , Reproducibility of Results , Retrospective Studies , Sensitivity and Specificity , Thyroid Gland/diagnostic imaging
6.
Mitochondrial DNA B Resour ; 6(3): 990-992, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33796711

ABSTRACT

Ipomoea aquatica, commonly known as water spinach, is an edible annual vegetable in the genus Ipomoea,. In this study, the complete plastome of Ipomoea aquatica was determined using the Illumina sequencing platform. The plastome size was 162,663 bp. It consists of four regions, including a large single-copy region (88,166 bp), a small single-copy region (12,069 bp), and a pair of inverted repeat regions (31,214 bp). This plastome encodes 114 unique genes, including 80 protein-coding genes (PCGs), 30 transfer RNA genes (tRNAs), and 4 ribosomal RNA genes (rRNAs). The GC content was 39.1%. Phylogenomic analysis based on 19 complete plastomes revealed that I. aquatica was closely related to I. diamantinensis.

7.
Cells ; 10(3)2021 02 26.
Article in English | MEDLINE | ID: mdl-33652745

ABSTRACT

Traumatic brain injury (TBI) affects over 3 million individuals every year in the U.S. There is growing appreciation that TBI can produce systemic modifications, which are in part propagated through blood-brain barrier (BBB) dysfunction and blood-brain cell interactions. As such, platelets and leukocytes contribute to mechanisms of thromboinflammation after TBI. While these mechanisms have been investigated in experimental models of contusion brain injury, less is known regarding acute alterations following mild closed head injury. To investigate the role of platelet dynamics and bioenergetics after TBI, we employed two distinct, well-established models of TBI in mice: the controlled cortical impact (CCI) model of contusion brain injury and the closed head injury (CHI) model of mild diffuse brain injury. Hematology parameters, platelet-neutrophil aggregation, and platelet respirometry were assessed acutely after injury. CCI resulted in an early drop in blood leukocyte counts, while CHI increased blood leukocyte counts early after injury. Platelet-neutrophil aggregation was altered acutely after CCI compared to sham. Furthermore, platelet bioenergetic coupling efficiency was transiently reduced at 6 h and increased at 24 h post-CCI. After CHI, oxidative phosphorylation in intact platelets was reduced at 6 h and increased at 24 h compared to sham. Taken together, these data demonstrate that brain trauma initiates alterations in platelet-leukocyte dynamics and platelet metabolism, which may be time- and injury-dependent, providing evidence that platelets carry a peripheral signature of brain injury. The unique trend of platelet bioenergetics after two distinct types of TBI suggests the potential for utilization in prognosis.


Subject(s)
Brain Injuries, Traumatic/blood , Leukocytes/metabolism , Animals , Disease Models, Animal , Humans , Mice
8.
Transl Cancer Res ; 10(5): 2451-2469, 2021 May.
Article in English | MEDLINE | ID: mdl-35116560

ABSTRACT

BACKGROUND: Metabolic disorder is a key factor in the occurrence and development of tumors. Metabolomics methods can explore a variety of prognostic markers for tumors. METHODS: The 454 patients included in this study comprised 92 cases of gastric cancer, 51 cases of gastric ulcers, 206 cases of gastric polyps, and 105 cases of gastritis. The plasma levels of 23 amino acids in patients before treatment were detected by liquid chromatography-tandem mass spectrometry, and t-test was used to determine the difference of amino acids levels between the gastric cancer group and other groups. Shared different amino acids were selected to analyze their relationship with staging, differentiation and prognosis. The TCGA database was used to explore the changes of genes expression related to the synthesis and degradation of different amino acids, and the relationship between the genes and stage, differentiation and prognosis. RESULTS: The plasma arginine level in the gastric cancer group was significantly higher than that in the gastric ulcer, gastric polyp, and gastritis groups (P values 0.0065, 0.0306, 0.0004, respectively).The level of plasma arginine in patients with non-metastatic gastric cancer was significantly higher than that in patients with metastatic gastric cancer (P=0.0013). Compared with the normal control, the key metabolic enzyme ASS1 gene was highly expressed in gastric cancer, and the survival time of gastric cancer patients with high expression of ASS1 was longer. Patients with high arginine expression had significantly longer survival (log-rank test P=0.0003). CONCLUSIONS: Increased plasma arginine level in gastric cancer patients was related to overexpression of ASS1 by TCGA database analysis. High expression of ASS1 prolonged the overall survival of gastric cancer patients, and the arginine level before treatment could be used as a prognostic factor.

9.
Transl Cancer Res ; 10(9): 4125-4147, 2021 Sep.
Article in English | MEDLINE | ID: mdl-35116710

ABSTRACT

BACKGROUND: Gasdermins (GSDMs) are a class of proteins related to pyrolysis and in humans, consist of GSDMA, GSDMB, GSDMC, GSDMD, DFNA5, and DFNB59. The inflammatory factors and cell contents released during pyrolysis can recruit immune cells and change the microenvironment. However, to date, there is a paucity of studies examining the relationship between GSDMs and the immune microenvironment in tumors. Therefore, this current report analyzed the expression of GSDM genes in tumors and their relationship with the immune microenvironment. METHODS: Apply GSCALite and GEPIA2 online analysis tools to analyze the gene expression levels and the Single nucleotide variant (SNV), copy number variation (CNV), and methylation characteristics of GSDM genes respectively. Use R software or TISIDB online analysis tool to carry out the correlation analysis required in the article. Furthermore, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to examine the role of these GSDM genes in various cancers. RESULTS: The results demonstrated that CNV can cause an increase in GSDM gene expression, and methylation can inhibit GSDM gene expression. The elevated expression of GSDMA, GSDMB, GSDMC, GSDMD, and DFNA5 in some or most tumors was often accompanied by elevated immune scores, increased immune cell infiltration, and high expression of major histocompatibility complex (MHC) molecules, chemokines and their receptors, and immune checkpoint-related genes. However, DFNB59 was often negatively correlated with these indicators in tumors. GSDMD was the most highly expressed GSDM protein in various normal tissues and tumors, and showed the strongest correlation with immune microenvironment-related genes. Moreover, the methylation of GSDMD was accompanied by low immune cell infiltration, low expression of MHC molecule-related genes, low expression of chemokines and receptor-related genes, and low expression of immune checkpoint-related genes. CONCLUSIONS: Therefore, the expression of GSDM-related genes is associated with the tumor immune microenvironment. The GSDM genes, especially GSDMD, may be used as therapeutic targets to predict or change the tumor microenvironment and as biomarkers to predict the therapeutic efficacy of immune checkpoint inhibitors.

10.
Can Assoc Radiol J ; 72(3): 410-417, 2021 Aug.
Article in English | MEDLINE | ID: mdl-32066248

ABSTRACT

PURPOSE: To evaluate the degree of gastric, enteric, colonic, and rectal filling in multidetector computed tomography (MDCT) whole gastroenterography. METHODS: In this prospective study involving 124 patients, 78 and 46 patients underwent MDCT whole gastroenterography using positive and neutral oral contrast agents, respectively. The degree of filling of the stomach, small and large bowel, was qualitatively analyzed by experienced radiologists using a 3-point scoring system. RESULTS: The majority of patients received a score of ≥2 for small intestine filling using both positive and neutral contrast agents (90.5% and 78.2%, respectively), and <9% of the patients had a score of 0. The highest score for the degree of filling in the small intestine was observed in the ileum, followed by the duodenum and jejunum. There was a significant difference in the degree of filling achieved with positive and neutral contrast agents in the duodenum (P = .013) and jejunum (P = .047). More than 74% of cases had an optimal filling of the stomach, whereas >80% of the cases had an optimal filling of the colorectal segments. Only ≤5.1% had a score of 0 for the analyzed segments of the colorectum. Positive and neutral contrast agents were associated with similar degree of filling in the stomach and colon segments without a significant difference in the extent of contrast agent filling (P > .05). CONCLUSIONS: Multidetector computed tomography whole gastroenterography was found to be a simple, safe, noninvasive, painless, and effective modality for the diagnosis of stomach and bowel complications in clinical settings.


Subject(s)
Colonic Neoplasms/diagnostic imaging , Contrast Media , Gastrointestinal Tract/diagnostic imaging , Multidetector Computed Tomography/methods , Administration, Oral , Adult , Aged , Aged, 80 and over , Colon/diagnostic imaging , Colonic Polyps/diagnostic imaging , Contrast Media/administration & dosage , Female , Humans , Intestine, Small/diagnostic imaging , Male , Mannitol/administration & dosage , Middle Aged , Prospective Studies , Radiation Dosage , Rectum/diagnostic imaging , Stomach/diagnostic imaging , Triiodobenzoic Acids/administration & dosage
11.
Data Brief ; 32: 106076, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32885002

ABSTRACT

Juvenile neuronal ceroid lipofuscinosis (JNCL, aka. juvenile Batten disease or CLN3 disease), a lethal pediatric neurodegenerative disease without cure, often presents with vision impairment and characteristic ophthalmoscopic features including focal areas of hyper-autofluorescence. In the associated research article "Loss of CLN3, the gene mutated in juvenile neuronal ceroid lipofuscinosis, leads to metabolic impairment and autophagy induction in retinal pigment epithelium" (Zhong et al., 2020) [1], we reported ophthalmoscopic observations of focal autofluorescent lesions or puncta in the Cln3Δex7/8 mouse retina at as young as 8 month old. In this data article, we performed differential interference contrast and confocal imaging analyses in all retinal layers to localize and characterize these autofluorescent lesions, including their spectral characteristics and morphology. We further studied colocalization of these autofluorescent lesions with the JNCL marker mitochondrial ATP synthase F0 sub-complex subunit C and various established retinal cell type markers.

12.
Biochim Biophys Acta Mol Basis Dis ; 1866(10): 165883, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32592935

ABSTRACT

Juvenile neuronal ceroid lipofuscinosis (JNCL, aka. juvenile Batten disease or CLN3 disease) is a lysosomal storage disease characterized by progressive blindness, seizures, cognitive and motor failures, and premature death. JNCL is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene, whose function is unclear. Although traditionally considered a neurodegenerative disease, CLN3 disease displays eye-specific effects: Vision loss not only is often one of the earliest symptoms of JNCL, but also has been reported in non-syndromic CLN3 disease. Here we described the roles of CLN3 protein in maintaining healthy retinal pigment epithelium (RPE) and normal vision. Using electroretinogram, fundoscopy and microscopy, we showed impaired visual function, retinal autofluorescent lesions, and RPE disintegration and metaplasia/hyperplasia in a Cln3 ~ 1 kb-deletion mouse model [1] on C57BL/6J background. Utilizing a combination of biochemical analyses, RNA-Seq, Seahorse XF bioenergetic analysis, and Stable Isotope Resolved Metabolomics (SIRM), we further demonstrated that loss of CLN3 increased autophagic flux, suppressed mTORC1 and Akt activities, enhanced AMPK activity, and up-regulated gene expression of the autophagy-lysosomal system in RPE-1 cells, suggesting autophagy induction. This CLN3 deficiency induced autophagy induction coincided with decreased mitochondrial oxygen consumption, glycolysis, the tricarboxylic acid (TCA) cycle, and ATP production. We also reported for the first time that loss of CLN3 led to glycogen accumulation despite of impaired glycogen synthesis. Our comprehensive analyses shed light on how loss of CLN3 affect autophagy and metabolism. This work suggests possible links among metabolic impairment, autophagy induction and lysosomal storage, as well as between RPE atrophy/degeneration and vision loss in JNCL.


Subject(s)
Blindness/genetics , Membrane Glycoproteins/deficiency , Neuronal Ceroid-Lipofuscinoses/genetics , Retinal Pigment Epithelium/pathology , Animals , Atrophy/genetics , Atrophy/pathology , Autophagy , Blindness/pathology , Cell Line , Disease Models, Animal , Gene Knock-In Techniques , Gene Knockdown Techniques , Glycogen/metabolism , Humans , Lysosomes/pathology , Membrane Glycoproteins/genetics , Mice , Mice, Transgenic , Microscopy, Electron , Molecular Chaperones/genetics , Mutation , Neuronal Ceroid-Lipofuscinoses/complications , Neuronal Ceroid-Lipofuscinoses/pathology , RNA, Small Interfering/metabolism , Retinal Pigment Epithelium/ultrastructure
13.
Arterioscler Thromb Vasc Biol ; 40(7): 1635-1650, 2020 07.
Article in English | MEDLINE | ID: mdl-32434410

ABSTRACT

OBJECTIVE: Thrombocytopenia is associated with many viral infections suggesting virions interact with and affect platelets. Consistently, viral particles are seen inside platelets, and platelet activation markers are detected in viremic patients. In this article, we sought mechanistic insights into these virion/platelet interactions by examining how platelets endocytose, traffic, and are activated by a model virion. Approach and Results: Using fluorescently tagged HIV-1 pseudovirions, 3-dimensional structured illumination microscopy, and transgenic mouse models, we probed the interactions between platelets and virions. Mouse platelets used known endocytic machinery, that is, dynamin, VAMP (vesicle-associated membrane protein)-3, and Arf6 (ADP-ribosylation factor 6), to take up and traffic HIV-1 pseudovirions. Endocytosed HIV-1 pseudovirions trafficked through early (Rab4+) and late endosomes (Rab7+), and then to an LC3+ (microtubule-associated protein 1A/1B-light chain 3) compartment. Incubation with virions induced IRAK4 (interleukin 1 receptor-associated kinase 4), Akt (protein kinase B), and IKK (IκB kinase) activation, granule secretion, and platelet-leukocyte aggregate formation. This activation required TLRs (Toll-like receptors) and MyD88 (myeloid differentiation primary response protein 88) but was less extensive and slower than activation with thrombin. In vivo, HIV-1 pseudovirions injection led to virion uptake and platelet activation, as measured by IKK activation, platelet-leukocyte aggregate formation, and mild thrombocytopenia. All were decreased in VAMP-3-/- and, megakaryocyte/platelet-specific, Arf6-/- mice. Similar platelet activation profiles (increased platelet-leukocyte aggregates, plasma platelet factor 4, and phospho-IκBα) were detected in newly diagnosed and antiretroviral therapy-controlled HIV-1+ patients. CONCLUSIONS: Collectively, our data provide mechanistic insights into the cell biology of how platelets endocytose and process virions. We propose a mechanism by which platelets sample the circulation and respond to potential pathogens that they take up.


Subject(s)
Blood Platelets/metabolism , Endocytosis , HIV Infections/blood , HIV-1/pathogenicity , Platelet Activation , Thrombocytopenia/blood , Toll-Like Receptors/blood , Virion , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/blood , ADP-Ribosylation Factors/genetics , Animals , Anti-Retroviral Agents/therapeutic use , Blood Platelets/virology , Cell Aggregation , Cells, Cultured , HIV Infections/diagnosis , HIV Infections/drug therapy , HIV Infections/virology , Humans , I-kappa B Kinase/blood , I-kappa B Kinase/genetics , Leukocytes/metabolism , Leukocytes/virology , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/blood , Myeloid Differentiation Factor 88/genetics , Platelet Factor 4/blood , Platelet Factor 4/genetics , Thrombocytopenia/diagnosis , Thrombocytopenia/virology , Toll-Like Receptors/deficiency , Toll-Like Receptors/genetics , Vesicle-Associated Membrane Protein 3/blood , Vesicle-Associated Membrane Protein 3/genetics
14.
Neural Plast ; 2020: 6283754, 2020.
Article in English | MEDLINE | ID: mdl-32273890

ABSTRACT

The motor and nonmotor symptoms of PD involve several brain regions. However, whether α-syn pathology originating from the SNc can directly lead to the pathological changes in distant cerebral regions and induce PD-related symptoms remains unclear. Here, AAV9-synapsin-mCherry-human SNCA (A53T) was injected into the unilateral SNc of mice. Motor function and olfactory sensitivity were evaluated. Our results showed that AAV9-synapsin-mCherry-human SNCA was continuously expressed in SNc. The animals showed mild motor and olfactory dysfunction at 7 months after viral injection. The pathology in SNc was characterized by the loss of dopaminergic neurons accompanied by ER stress. In the striatum, hα-syn expression was high, CaMKß-2 and NR2B expression decreased, and active synapses reduced. In the olfactory bulb, hα-syn expression was high, and aging cells in the mitral layer increased. The results suggested that hα-syn was transported in the striatum and OB along the nerve fibers that originated from the SNc and induced pathological changes in the distant cerebral regions, which contributed to the motor and nonmotor symptoms of PD.


Subject(s)
Neurons/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Pars Compacta/metabolism , Pars Compacta/pathology , Synapses/pathology , alpha-Synuclein/metabolism , Adenoviridae/physiology , Animals , Genetic Vectors/physiology , Male , Mice, Inbred C57BL , Olfactory Bulb/metabolism , Olfactory Bulb/pathology , alpha-Synuclein/administration & dosage
15.
Toxicol Mech Methods ; 30(5): 350-357, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32189544

ABSTRACT

Rotenone is a mitochondrial complex I inhibitor, which can cause the death of dopaminergic (DA) neurons and Parkinson's disease (PD). Currently, whether metformin has a protective effect on neurotoxicity induced by rotenone is unclear. The purpose of this study was to evaluate the potential protective effect of metformin against rotenone-induced neurotoxicity. PD animal model was established by unilateral rotenone injection into the right substantia nigra (SN) of C57BL/6 mice. The behavioral tests were performed by rotarod test and cylinder test. The numbers of TH-positive neurons and Iba-1 positive microglia in the SN were investigated by immunohistochemical staining. The mRNA levels of proinflammatory cytokines (TNF-α and IL-1ß) and molecules involved in endoplasmic reticulum (ER) stress (ATF4, ATF6, XBP1, Grp78, and CHOP) in the midbrain were detected by Quantitative real-time PCR. This study showed that 50 mg/kg metformin given orally daily, beginning 3 d before rotenone injection and continuing for 4 weeks following rotenone injection, significantly ameliorated dyskinesia, increased the number of TH-positive neurons, and mitigated the activation of microglia in the SN in rotenone-induced PD mice. Furthermore, 50 mg/kg metformin markedly downregulated the expression of proinflammatory cytokines (TNF-α and IL-1ß) and ER stress-related genes (ATF4, ATF6, XBP1, Grp78, and CHOP) in rotenone-induced PD mice. Metformin has a protective effect on DA neurons against rotenone-induced neurotoxicity through inhibiting neuroinflammation and ER stress in PD mouse model.


Subject(s)
Behavior, Animal/drug effects , Dopaminergic Neurons/drug effects , Metformin/pharmacology , Parkinson Disease, Secondary/prevention & control , Protective Agents/pharmacology , Rotenone/toxicity , Animals , Disease Models, Animal , Dopaminergic Neurons/immunology , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Endoplasmic Reticulum Stress/immunology , Inflammation , Interleukin-1beta/metabolism , Male , Metformin/administration & dosage , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/immunology , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/immunology , Protective Agents/administration & dosage , Tumor Necrosis Factor-alpha/metabolism
16.
Methods Mol Biol ; 1880: 511-528, 2019.
Article in English | MEDLINE | ID: mdl-30610718

ABSTRACT

Anucleate platelets are produced by fragmentation of megakaryocytes. Platelets circulate in the bloodstream for a finite period: upon vessel injury, they are activated to participate in hemostasis; upon senescence, unused platelets are cleared. Platelet hypofunction leads to bleeding. Conversely, pathogenic platelet activation leads to occlusive events that precipitate strokes and heart attacks. Recently, we and others have shown that autophagy occurs in platelets and is important for platelet production and normal functions including hemostasis and thrombosis. Due to the unique properties of platelets, such as their lack of nuclei and their propensity for activation, methods for studying platelet autophagy must be specifically tailored. Here, we describe useful methods for examining autophagy in both human and mouse platelets.


Subject(s)
Autophagosomes/ultrastructure , Autophagy/physiology , Blood Platelets/physiology , Intravital Microscopy/methods , Animals , Autophagosomes/physiology , Blood Platelets/cytology , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Healthy Volunteers , Hemostasis/physiology , Humans , Intravital Microscopy/instrumentation , Megakaryocytes/physiology , Mice , Mice, Transgenic , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Microscopy, Electron, Transmission/instrumentation , Microscopy, Electron, Transmission/methods , Microtubule-Associated Proteins/analysis , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism
17.
Plant Genome ; 12(3): 1-13, 2019 11.
Article in English | MEDLINE | ID: mdl-33016582

ABSTRACT

CORE IDEAS: Low P stress is a global issue for grain production. Significant phenotypic differences were detected among 13 traits in 356 maize lines under P-sufficient and P-deficient conditions. Significant single nucleotide polymorphisms (SNPs) and low-P stress-responsive genes were identified for 13 maize root traits based on a genome-wide association study. Hap5, harboring 12 favorable SNPs, could enhance strong root systems and P absorption under low-P stress. Phosphorus is an essential macronutrient required for normal plant growth and development. Determining the genetic basis of root traits will enhance our understanding of maize's (Zea mays L.) tolerance to low-P stress. Here, we identified significant phenotypic differences for 13 traits in maize seedlings subjected to P-sufficient and P-deficient conditions. Six extremely sensitive and seven low-P stress tolerant inbreds were selected from 356 inbred lines of maize. No significant differences were observed between temperate and tropical-subtropical groups with respect to trait ratios associated with the adaptation to low-P stress. The broad-sense heritability of these traits ranged from relatively moderate (0.59) to high (0.90). Through genome-wide association mapping with 541,575 informative single nucleotide polymorphisms (SNPs), 551, 1140 and 1157 significant SNPs were detected for the 13 traits in 2012, 2016 and both years combined, respectively, along with 23 shared candidate genes, seven of which overlapped with reported quantitative trait loci and genes for low-P stress. Five haplotypes located in candidate gene GRMZM2G009544 were identified; among these, Hap5, harboring 12 favorable SNP alleles, showed significantly greater values for the root traits studied than the other four haplotypes under both experimental conditions. The candidate genes and favorable haplotypes and alleles identified here provide promising resources for genetic studies and molecular breeding for improving tolerance to abiotic stress in maize.


Subject(s)
Genome-Wide Association Study , Zea mays/genetics , Phenotype , Phosphorus , Seedlings/genetics
18.
Mitochondrial DNA B Resour ; 4(2): 4216-4217, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-33366389

ABSTRACT

Alopecurus aequalis is a predominant weed species that distributes widely in North temperate regions. The complete plastome of A. aequalis is reported here. It is a circular molecular of 136,382 bp in length and consists of a large single-copy region (LSC: 80,455 bp), a small single-copy region (SSC: 12,849 bp), and two inverted repeats regions (IRs: 21,539 bp). GC content is 38.3%. This plastome encodes 112 unique genes, including 78 protein-coding genes, 30 tRNAs, and 4 rRNAs. Phylogenetic tree shows that A. aequalis is sister to Poa annua.

19.
Metabolites ; 8(3)2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29996515

ABSTRACT

Conventional two-dimensional (2D) cell cultures are grown on rigid plastic substrates with unrealistic concentration gradients of O2, nutrients, and treatment agents. More importantly, 2D cultures lack cell⁻cell and cell⁻extracellular matrix (ECM) interactions, which are critical for regulating cell behavior and functions. There are several three-dimensional (3D) cell culture systems such as Matrigel, hydrogels, micropatterned plates, and hanging drop that overcome these drawbacks but they suffer from technical challenges including long spheroid formation times, difficult handling for high throughput assays, and/or matrix contamination for metabolic studies. Magnetic 3D bioprinting (M3DB) can circumvent these issues by utilizing nanoparticles that enable spheroid formation and growth via magnetizing cells. M3DB spheroids have been shown to emulate tissue and tumor microenvironments while exhibiting higher resistance to toxic agents than their 2D counterparts. It is, however, unclear if and how such 3D systems impact cellular metabolic networks, which may determine altered toxic responses in cells. We employed a Stable Isotope-Resolved Metabolomics (SIRM) approach with 13C6-glucose as tracer to map central metabolic networks both in 2D cells and M3DB spheroids formed from lung (A549) and pancreatic (PANC1) adenocarcinoma cells without or with an anti-cancer agent (sodium selenite). We found that the extent of 13C-label incorporation into metabolites of glycolysis, the Krebs cycle, the pentose phosphate pathway, and purine/pyrimidine nucleotide synthesis was largely comparable between 2D and M3DB culture systems for both cell lines. The exceptions were the reduced capacity for de novo synthesis of pyrimidine and sugar nucleotides in M3DB than 2D cultures of A549 and PANC1 cells as well as the presence of gluconeogenic activity in M3DB spheroids of PANC1 cells but not in the 2D counterpart. More strikingly, selenite induced much less perturbation of these pathways in the spheroids relative to the 2D counterparts in both cell lines, which is consistent with the corresponding lesser effects on morphology and growth. Thus, the increased resistance of cancer cell spheroids to selenite may be linked to the reduced capacity of selenite to perturb these metabolic pathways necessary for growth and survival.

20.
FASEB J ; 32(12): 6796-6807, 2018 12.
Article in English | MEDLINE | ID: mdl-29939786

ABSTRACT

Autophagy of mitochondria (mitophagy) is essential for maintaining muscle mass and healthy skeletal muscle. Patients with heritable phosphatidic acid phosphatase lipin-1-null mutations present with severe rhabdomyolysis and muscle atrophy in glycolytic muscle fibers, which are accompanied with mitochondrial aggregates and reduced mitochondrial cytochrome c oxidase activity. However, the underlying mechanisms leading to muscle atrophy as a result of lipin-1 deficiency are still not clear. In this study, we found that lipin-1 deficiency in mice is associated with a marked accumulation of abnormal mitochondria and autophagic vacuoles in glycolytic muscle fibers. Our studies using lipin-1-deficient myoblasts suggest that lipin-1 participates in B-cell leukemia (BCL)-2 adenovirus E1B 19 kDa protein-interacting protein 3 (Bnip3)-regulated mitophagy by interacting with microtubule-associated protein 1A/1B-light chain (LC)3, which is an important step in the recruitment of mitochondria to nascent autophagosomes. The requirement of lipin-1 for Bnip3-mediated mitophagy was further verified in vivo in lipin-1-deficient green fluorescent protein-LC3 transgenic mice (lipin-1-/--GFP-LC3). Finally, we showed that lipin-1 deficiency in mice resulted in defective mitochondrial adaptation to starvation-induced metabolic stress and impaired contractile muscle force in glycolytic muscle fibers. In summary, our study suggests that deregulated mitophagy arising from lipin-1 deficiency is associated with impaired muscle function and may contribute to muscle rhabdomyolysis in humans.-Alshudukhi, A. A., Zhu, J., Huang, D., Jama, A., Smith, J. D., Wang, Q. J., Esser, K. A., Ren, H. Lipin-1 regulates Bnip3-mediated mitophagy in glycolytic muscle.

SELECTION OF CITATIONS
SEARCH DETAIL
...