Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37177241

ABSTRACT

Seasonally frozen ground regions occupy approximately 55% of the exposed land surface in the Northern Hemisphere, and frost heave is the common global problem in seasonally frozen soil areas. Frost heave induces uneven deformation of ground and damages railways, road paving, and buildings. How to mitigate frost heave is the most important technical issue in this field that has provoked great interest. Here, using freezing experiments, we investigate the effect of anionic polyacrylamide (APAM) polymer on frost susceptible soil. The results demonstrate a so-far undocumented inhibition of frost heave by APAM in freezing soil, namely APAM (tested at concentrations from 0.0 wt% to 0.60 wt%) slows down the frost heave by a factor of up to 2.1 (since 0.60 wt% APAM can decrease frost heave from 8.56 mm to 4.14 mm in comparison to the control experiment). Moreover, it can be observed that the maximum water content near the frozen fringe decreased from 53.4% to 31.4% as the APAM content increased from 0.0 wt% to 0.60 wt%, implying a mitigated ice lens growth. Hydrogen bonding between APAM and soil particles triggers an adsorption mechanism that accumulates soil particles, and thus can potentially inhibit the separation and growth of the ice lens. Moreover, the residue of APAM due to hydrogen bonding-induced adsorption in the pores of granular media may narrow seepage channels (capillary barriers) and provide an unfavourable condition for water migration. The use of APAM can also increase the viscosity of the solution, which causes a greater water migration resistance. This research provides new insights into APAM-influenced frost heave (introducing APAM into the soil can induce bridging adsorption between APAM polymer segments and a particle surface), can enable engineers and researchers to utilise chemical improvement design and to consider suitable actions (e.g., by injecting APAM solution into a frost susceptible soil or using APAM-modified soil to replace the frost susceptible soil) to prevent frost heave from having a negative impact on traffic roads and buildings in cold regions.

2.
Oecologia ; 194(1-2): 165-176, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32930886

ABSTRACT

Changes in resource availability can alter plant growth, the influence of plants on soil characteristics, and, ultimately, plant-soil feedback (PSF). Previous studies often show that invasive plants can outperform native plants under high but not low resource conditions. However, it remains unclear whether under low resource conditions, invaders can outperform natives in the long term by generating more positive or less negative PSFs. Using three non-native invasive and three non-invasive native annual Asteraceae plants, we conducted a two-phase pot experiment, where in the first, conditioning generation plants were grown to induce changes in soil characteristics, and in the second, bioassay generation plants were regrown to evaluate how they respond to these soils. Half of the pots received a nutrient addition treatment in the conditioning generation. We found significant species-specific effects of conditioning on most of the soil characteristics, and some soil characteristics were significantly correlated with bioassay generation biomass of a subset of species, but neither species nor invasive or native status affected bioassay generation biomass. All invasive species generated neutral PSFs across soil nutrient conditions. The native Emilia sonchifolia tended to condition the soil that favored its own growth more than others, and under low nutrient conditions, the native Eclipta prostrata conditioned the soil that disfavored its own growth more than others. These results indicate that invaders may not outperform natives through PSFs under low resource conditions, and increasing resource availability may change the types of PSFs for some native but not invasive plants.


Subject(s)
Asteraceae , Soil , Biomass , Introduced Species , Plant Development
SELECTION OF CITATIONS
SEARCH DETAIL
...