Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Commun Signal ; 22(1): 234, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643181

ABSTRACT

BACKGROUND: p66Shc, as a redox enzyme, regulates reactive oxygen species (ROS) production in mitochondria and autophagy. However, the mechanisms by which p66Shc affects autophagosome formation are not fully understood. METHODS: p66Shc expression and its location in the trophoblast cells were detected in vivo and in vitro. Small hairpin RNAs or CRISPR/Cas9, RNA sequencing, and confocal laser scanning microscope were used to clarify p66Shc's role in regulating autophagic flux and STING activation. In addition, p66Shc affects mitochondrial-associated endoplasmic reticulum membranes (MAMs) formation were observed by transmission electron microscopy (TEM). Mitochondrial function was evaluated by detected cytoplastic mitochondrial DNA (mtDNA) and mitochondrial membrane potential (MMP). RESULTS: High glucose induces the expression and mitochondrial translocation of p66Shc, which promotes MAMs formation and stimulates PINK1-PRKN-mediated mitophagy. Moreover, mitochondrial localized p66Shc reduces MMP and triggers cytosolic mtDNA release, thus activates cGAS/STING signaling and ultimately leads to enhanced autophagy and cellular senescence. Specially, we found p66Shc is required for the interaction between STING and LC3II, as well as between STING and ATG5, thereby regulates cGAS/STING-mediated autophagy. We also identified hundreds of genes associated several biological processes including aging are co-regulated by p66Shc and ATG5, deletion either of which results in diminished cellular senescence. CONCLUSION: p66Shc is not only implicated in the initiation of autophagy by promoting MAMs formation, but also helps stabilizing active autophagic flux by activating cGAS/STING pathway in trophoblast.


Subject(s)
Autophagosomes , Extravillous Trophoblasts , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , Autophagosomes/metabolism , Autophagy , DNA, Mitochondrial/metabolism , Trophoblasts/metabolism , Glucose/metabolism , Nucleotidyltransferases/metabolism
2.
Exp Ther Med ; 20(6): 236, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33149789

ABSTRACT

In peripheral arterial disease (PAD), angiogenesis is a major process involved in repairing the microvasculature in the ischemic lower limb. MicroRNA-210 (miR-210) is a microRNA that is substantially increased in patients with PAD. However, the effects of miR-210 on angiogenesis following PAD remain elusive. In the present study, mice with hindlimb ischemia (HLI) were generated as an animal model of PAD, and miR-210 levels were overexpressed in the ischemic limb. The overexpression of miR-210 using microRNA mimics greatly improved angiogenesis and perfusion recovery; in contrast, the knockdown of miR-210 impaired perfusion recovery 28 days after HLI. Ischemic muscle tissue was harvested 7 days after experimental PAD in order to perform biochemical tests, and miR-210 antagonism resulted in increased malondialdehyde levels. In cultured endothelial cells under simulated ischemia, miR-210 mimic improved endothelial cell viability and enhanced tube formation; and a miR-210 inhibitor decreased cell survival, reduced tube formation and increased reactive oxygen species (ROS) levels. Furthermore, miR-210 antagonism increased the protein disulfide-isomerase levels in cultured endothelial cells. These results demonstrate that ischemia-induced miR-210 elevation is adaptive in PAD, and that miR-210 improves angiogenesis at least partially through decreasing ROS production.

3.
Biosci Rep ; 39(2)2019 02 28.
Article in English | MEDLINE | ID: mdl-30683806

ABSTRACT

Atrial fibrillation (AF) rat models and rat cardiac fibroblasts (CFs) with overexpressed or inhibited miR-10a were used to investigate the possible role of miR-10a-mediated transforming growth factor-ß (TGF-ß1)/Smads signaling in cardiac fibrosis and fibroblast proliferation in rats with AF. Gene ontology and pathway enrichment analyses were used to identify the possible function of miR-10a in cardiac fibrosis. The results showed that overexpressed miR-10a significantly prolonged the duration of AF, further elevated the collagen volume fraction (CVF), and increased the viability of CFs in AF rats; these findings were in contrast with the findings for rats with inhibition of miR-10a (all P<0.05). Moreover, miR-10a overexpression could promote miR-10a, collagen-I, collagen III, α-SMA, and TGF-ß1 protein expression and increase the levels of hydroxyproline but reduced Smad7 protein expression in atrial tissues and CFs in AF rats. Not surprisingly, inhibiting miR-10a led to completely contrasting results (all P<0.05). Moreover, TGF-ß1 treatment could reverse the inhibitory effect of miR-10a down-regulation on cardiac fibrosis in CFs. Bioinformatics analysis and luciferase reporter assay results demonstrated that miR-10a bound directly to the 3'-UTR of BCL6, which is involved in cell growth and proliferation. Thus, our study indicate that down-regulation of miR-10a may inhibit collagen formation, reduce atrial structure remodeling, and decrease proliferation of CFs, eventually suppressing cardiac fibrosis in AF rats via inhibition of the TGF-ß1/Smads signaling pathway.


Subject(s)
Atrial Fibrillation/pathology , Fibroblasts/pathology , MicroRNAs/metabolism , Myocardium/pathology , Smad Proteins/genetics , Transforming Growth Factor beta1/metabolism , 3' Untranslated Regions , Animals , Atrial Fibrillation/metabolism , Cell Proliferation/drug effects , Collagen/genetics , Collagen/metabolism , Disease Models, Animal , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibrosis/metabolism , Fibrosis/pathology , Gene Expression Regulation , Hydroxyproline/metabolism , Male , Myocardium/metabolism , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Rats, Sprague-Dawley , Signal Transduction , Smad Proteins/metabolism , Transforming Growth Factor beta1/pharmacology
4.
Exp Ther Med ; 17(1): 798-802, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30651865

ABSTRACT

In peripheral arterial disease (PAD), angiogenesis is the major process involved in repairing the microvasculature in the ischemic lower limb. Curcumin, a monomer isolated from turmeric roots, has been demonstrated to have pro- and anti-angiogenic effects under different circumstances. Previous studies have indicated that curcumin treatment improves tissue repair and perfusion recovery in a mouse model of diabetic PAD. However, the effects of curcumin on PAD under non-diabetic conditions has remained elusive, In the present study, mice with PAD and a normal glycaemic profile were treated with curcumin, which improved perfusion recovery, increased capillary density and elevated microRNA (miR)-93 expression in ischemic muscle tissue. In cultured endothelial cells under simulated ischemia, curcumin improved endothelial cell viability and enhanced tube formation. However, following miR-93 knockdown using a microRNA inhibitor, endothelial cell tube formation was inhibited. Furthermore, in the presence of the miR-93 inhibitor, curcumin did not alter endothelial cell viability or tube formation. These results demonstrate that curcumin had beneficial effects in non-diabetic PAD by improving angiogenesis, which may have been achieved partially via the promotion of miR-93 expression.

SELECTION OF CITATIONS
SEARCH DETAIL
...