Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Int J Hyg Environ Health ; 262: 114441, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39121640

ABSTRACT

The relationship between maternal peripheral blood mitochondrial DNA and adverse pregnancy outcomes, specifically preterm birth (PTB), remains uncertain. To investigate the effects of preconception mitochondrial DNA copy number (mtDNAcn) on the association between prenatal air pollutants exposure and PTB risk, a total of 1871 expectant mothers from six regions in Henan Province were recruited. Information regarding air pollutants was obtained from 151 environmental monitoring sites, and relative mtDNAcn was evaluated using real-time PCR analysis. After adjusting for potential confounding variables, it was determined that the risk of PTB increased with elevated levels of inhalable particulate matter (PM10), fine particulate matter (PM2.5), sulfur dioxide (SO2), carbon monoxide (CO) and ozone (O3) exposure (P < 0.05) but decreased with higher nitrogen dioxide (NO2) exposure (0.05 < P < 0.10) during the entire pregnancy. Additionally, the preconception relative mtDNAcn was lower in the PTB group (0.82 ± 0.23) compared to the term group (0.92 ± 0.29). Furthermore, for each 0.1-unit increase in preconception mtDNAcn, the risk of PTB decreased by 14.8%. Stratified analyses revealed that the risk of PTB rose with increasing O3 concentrations, regardless of the relative mtDNAcn. Moreover, the study found a significant association between PTB risk and prenatal exposure to elevated PM10, PM2.5, SO2, and CO, particularly in mothers with low mtDNAcn (≤0.88) (P < 0.05). Conversely, a decrease in the PTB risk was observed with elevated NO2 exposure in mothers with high mtDNAcn (>0.88). Interaction analysis revealed that exposure to PM10, PM2.5, SO2, NO2, and CO interacted with mtDNAcn, respectively, affecting PTB risk (P-interaction<0.05). These findings indicate a noteworthy association between PTB risk and prenatal air pollutants exposure, which is influenced by the preconception mtDNAcn.


Subject(s)
Air Pollutants , Air Pollution , DNA Copy Number Variations , DNA, Mitochondrial , Particulate Matter , Premature Birth , Humans , Female , Pregnancy , Premature Birth/epidemiology , Adult , Air Pollutants/adverse effects , Air Pollution/adverse effects , Particulate Matter/adverse effects , China/epidemiology , Maternal Exposure/adverse effects , Sulfur Dioxide/adverse effects , Nitrogen Dioxide/adverse effects , Young Adult , Ozone/adverse effects
2.
Front Immunol ; 15: 1425466, 2024.
Article in English | MEDLINE | ID: mdl-39100672

ABSTRACT

Introduction: Genetic mutations in critical nodes of pulmonary epithelial function are linked to the pathogenesis of pulmonary fibrosis (PF) and other interstitial lung diseases. The slow progression of these pathologies is often intermitted and accelerated by acute exacerbations, complex non-resolving cycles of inflammation and parenchymal damage, resulting in lung function decline and death. Excess monocyte mobilization during the initial phase of an acute exacerbation, and their long-term persistence in the lung, is linked to poor disease outcome. Methods: The present work leverages a clinical idiopathic PF dataset and a murine model of acute inflammatory exacerbations triggered by mutation in the alveolar type-2 cell-restricted Surfactant Protein-C [SP-C] gene to spatially and phenotypically define monocyte/macrophage changes in the fibrosing lung. Results: SP-C mutation triggered heterogeneous CD68+ macrophage activation, with highly active peri-injured cells relative to those sampled from fully remodeled and healthy regions. Ingenuity pathway analysis of sorted CD11b-SigF+CD11c+ alveolar macrophages defined asynchronous activation of extracellular matrix re-organization, cellular mobilization, and Apolipoprotein E (Apoe) signaling in the fibrosing lung. Cell-cell communication analysis of single cell sequencing datasets predicted pro-fibrogenic signaling (fibronectin/Fn1, osteopontin/Spp1, and Tgfb1) emanating from Trem2/TREM2 + interstitial macrophages. These cells also produced a distinct lipid signature from alveolar macrophages and monocytes, characterized by Apoe expression. Mono- and di-allelic genetic deletion of ApoE in SP-C mutant mice had limited impact on inflammation and mortality up to 42 day after injury. Discussion: Together, these results provide a detailed spatio-temporal picture of resident, interstitial, and monocyte-derived macrophages during SP-C induced inflammatory exacerbations and end-stage clinical PF, and propose ApoE as a biomarker to identify activated macrophages involved in tissue remodeling.


Subject(s)
Pulmonary Fibrosis , Animals , Mice , Humans , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/metabolism , Phenotype , Disease Models, Animal , Pulmonary Surfactant-Associated Protein C/genetics , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Mutation , Macrophage Activation/genetics , Macrophage Activation/immunology , Apolipoproteins E/genetics , Male , Inflammation/immunology , Disease Progression , Macrophages/immunology , Macrophages/metabolism , Lung/pathology , Lung/immunology , Lung/metabolism , Mice, Inbred C57BL , Female , Monocytes/immunology , Monocytes/metabolism
3.
Article in English | MEDLINE | ID: mdl-38888699

ABSTRACT

OBJECTIVE: Breast cancer (BC) is a cancer that seriously affects women's health. BC cell migration increases the mortality of BC patients. Current studies have shown that long noncoding RNAs (LncRNAs) are related to the metastasis mechanism of BC. This study aimed to explore the function and role of LncRNA OIP5-AS1 in BC. And we analyzed its regulatory mechanism and related modification process. METHODS: Our study analyzed the expression pattern of OIP5-AS1 in BC tissues and cell lines by qRT-PCR. The effects of OIP5-AS1 on the function of BC cells were detected by CCK-8 and transwell experiments. Bioinformatics analysis and double luciferase reporter gene detection were used to confirm the correlation between OIP5-AS1 and miR-150-5p and between miR-150-5p and Cyclin D2 (CCND2). The rescue test analyzed the effect of miR-150-5p regulating OIP5-AS1. In addition, the N6-methyladenosine (m6A) modification process of OIP5-AS1 was analyzed by RNA m6A dot blot, RIP assay, and double luciferase report experiment. RESULTS: OIP5-AS1 was significantly upregulated in BC tissues and cell lines. OIP5-AS1 knockdown inhibited BC cell viability, migration and invasion. OIP5-AS1 upregulated CCND2 by binding with miR-150-5p. This process affected the metastasis of BC. Higher degree of m6A methylation was confirmed in BC cell lines. There were some binding sites between methyltransferase like 3 (METTL3) and OIP5-AS1. Moreover, the silencing of METTL3 inhibited the OIP5-AS1 expression through decreasing the m6A methylation levels. CONCLUSIONS: LncRNA OIP5-AS1 promoted cell viability and metastasis of BC cells by targeting miR-150-5p/CCND2 axis. This process was modified by m6A methylation of METTL3.

4.
Am J Physiol Renal Physiol ; 327(1): F146-F157, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38779753

ABSTRACT

17ß-Hydroxysteroid dehydrogenase-13 (HSD17B13), a newly identified lipid droplet-associated protein, plays an important role in the development of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH). Emerging evidence demonstrates that NASH is an independent risk factor for chronic kidney disease, which is frequently accompanied by renal lipid accumulation. In addition, the HSD17B13 rs72613567 variant is associated with lower levels of albuminuria in patients with biopsy-proven NAFLD. At present, the role of HSD17B13 in lipid accumulation in the kidney is unclear. This study utilized bioinformatic and immunostaining approaches to examine the expression and localization of HSD17B13 along the mouse urinary tract. We found that HSD17B13 is constitutively expressed in the kidney, ureter, and urinary bladder. Our findings reveal for the first time, to our knowledge, the precise localization of HSD17B13 in the mouse urinary system, providing a basis for further studying the pathogenesis of HSD17B13 in various renal and urological diseases.NEW & NOTEWORTHY HSD17B13, a lipid droplet-associated protein, is crucial in nonalcoholic fatty liver disease (NAFLD) development. NAFLD also independently raises chronic kidney disease (CKD) risk, often with renal lipid buildup. However, HSD17B13's role in CKD-related lipid accumulation is unclear. This study makes the first effort to examine HSD17B13 expression and localization along the urinary system, providing a basis for exploring its physiological and pathophysiological roles in the kidney and urinary tract.


Subject(s)
17-Hydroxysteroid Dehydrogenases , Mice, Inbred C57BL , Animals , Male , Mice , 17-Hydroxysteroid Dehydrogenases/genetics , 17-Hydroxysteroid Dehydrogenases/metabolism , Kidney/metabolism , Kidney/pathology , Urinary Tract/metabolism , Urinary Tract/pathology
5.
Sci Bull (Beijing) ; 69(10): 1506-1514, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38503651

ABSTRACT

Trading water for carbon has cautioned large-scale afforestation in global drylands. However, model simulations suggested that the consumption of soil water could be partially offset by increasing precipitation due to vegetation feedback. A systematic meta-analysis of long-term and large-scale field observations is urgently required to address the abovementioned limitations, and the implementation of large-scale afforestation since 1978 in northern China provides an ideal example. This study collected data comprising 1226 observations from 98 sites in northern China to assess the variation in soil water content (SWC) with stand age after afforestation and discuss the effects of tree species, precipitation and conversions of land use types on SWC. We found that the SWC has been decreased by coniferous forest and broadleaf forest at rates of 0.6 and 3.2 mm decade-1, respectively, since 1978. There is a significant declining trend of SWC with the stand age of plantations, and the optimum growth stage for plantation forest is 0-20 a in northern China. However, we found increases in SWC for the conversion from grassland to forest and in the low-precipitation region, both are corresponding to the increased SWC in coniferous forest. Our study implies that afforestation might lead to a soil water deficit crisis in northern China in the long term at the regional scale but depends on prior land use types, tree taxa and the mean annual precipitation regime, which sheds light on decision-making regarding ecological restoration policies and water resource management in drylands.

6.
BMC Med Genomics ; 17(1): 3, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167124

ABSTRACT

OBJECTIVE: To investigate the prevalence of BRCA1/2 gene variants and evaluate the clinical and pathological characteristics associated with these variants in Chinese Hakka breast cancer patients. METHODS: A total of 409 breast cancer patients were analyzed based on next-generation sequencing results, with 337 categorized as non-carriers and 72 as carriers of BRCA1/2 variants. Data on the patients' BRCA1/2 gene mutation status, clinical and pathological characteristics, as well as menstrual and reproductive information, were collected, analyzed, compared, and tabulated. Logistic regression analysis was performed to explore the relationship between clinical characteristics and pathogenic variants. RESULTS: Among the patients, 72 were identified as carriers of pathogenic or likely pathogenic variants in BRCA1/2, while 337 had likely benign or benign mutations. The BRCA1 c.2635G > T (p. Glu879*) variant was detected at a high frequency, accounting for 12.5% (4/32) of the BRCA1 mutations, while the c.5164_5165del (p.Ser1722Tyrfs*4) variant was common among the BRCA2 mutations, accounting for 17.5% (7/40). It was observed that a higher proportion of BRCA1 carriers had the triple-negative breast cancer subtype, whereas more BRCA2 carriers exhibited estrogen receptor (ER) + and progesterone receptor (PR) + subtypes. Multivariate logistic regression analysis revealed that a family history of cancer (OR = 2.36, 95% CI = 1.00-5.54), bilateral cancer (OR = 4.78, 95% CI 1.61-14.20), human epidermal growth factor receptor 2 (HER2)- (OR = 8.23, 95% CI 3.25-20.84), and Ki67 ≥ 15% (OR = 3.88, 95% CI 1.41-10.65) were associated with BRCA1/2 mutations, with the age at diagnosis, age at menarche, and premenopausal status serving as covariates. CONCLUSIONS: The most common pathogenic variant of the BRCA1 and BRCA2 in breast cancer patients was c.2635G > T and c.5164_5165del, respectively. Additionally, a family history of cancer, bilateral cancer, HER2-, and Ki67 ≥ 15% were identified as independent predictors of BRCA1/2 pathogenic variants.


Subject(s)
Breast Neoplasms , Female , Humans , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , China/epidemiology , Genetic Predisposition to Disease , Germ-Line Mutation , Ki-67 Antigen/genetics
7.
Materials (Basel) ; 16(21)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37959517

ABSTRACT

In this work, the influence of normalizing temperature on vanadium micro-alloyed P460NL1 steel is studied in terms of microstructures and impact toughness. With the normalizing temperature increased from 850 °C to 950 °C, the V(C,N) particles are dissolved. The dissolution of V(C,N) particles leads to a reduction in their ability to pin the primitive austenite grain boundaries, resulting in the coarsening of the primitive austenite grain. Simultaneously, the number of precipitated particles promoting ferrite nucleation decreased. The combination of these two effects led to the coarsening of ferrite grains in the steel samples. Of note, in the sample normalized at a temperature of 850 °C, the ferrite and pearlite crystals clearly exhibited banded structures. As the normalizing temperature increased, the ferrite-pearlite belt phase weakened. The highly distributed belt phase resulted in poor impact toughness of the steel sample normalized at 850 °C. The belt phase was improved at a normalizing temperature of 900 °C. In addition to that, the microstructure did not undergo significant coarsening at this normalizing temperature, thereby allowing it to achieve the highest toughness among all samples that were prepared for this study. The belt phase almost vanished at the normalizing temperature of 950 °C. However, microstructure coarsening occurred at this temperature, resulting in the deterioration of impact toughness.

8.
Sci Total Environ ; 903: 166884, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37696401

ABSTRACT

Forest growth in the majority of northern China is currently limited by drought and low nitrogen (N) availability. Drought events with increasing intensity have threatened multiple ecosystem services provided by forests. Whether N addition will have a detrimental or beneficial moderation effect on forest resistance and recovery to drought events was unclear. Here, our study focuses on Pinus tabulaeformis, which is the main plantation forest species in northern China. We investigated the role of climate change and N addition in driving multi-year tree growth with an 8-year soil nitrogen fertilization experiment and analyzing 184 tree ring series. A moderate drought event occurred during the experiment, providing an opportunity for us to explore the effects of drought and N addition on tree resistance and recovery. We found that N addition was beneficial for increasing the resistance of middle-aged trees, but had no effect on mature trees. The recovery of trees weakened significantly with increasing N addition, and the reduction in fine root biomass caused by multiyear N addition was a key influencing factor limiting recovery after moderate drought. Our study implies that the combined effect of increasing drought and N deposition might increase the risk of pine forest mortality in northern China.

9.
World J Gastroenterol ; 28(35): 5237-5239, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36188721

ABSTRACT

[This corrects the article on p. 2921 in vol. 19, PMID: 23704825.].

10.
Front Endocrinol (Lausanne) ; 13: 874987, 2022.
Article in English | MEDLINE | ID: mdl-35669690

ABSTRACT

Background: Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disease characterized by irregular menstrual, hyperandrogenism, and polycystic ovaries. The definitive mechanism of the disorder is not fully elucidated. Store-operated Ca2+ entry (SOCE) plays a role in glucose and lipid metabolism, inflammation, hormone secretion, and cell proliferation. STIMs and Orais are the main elements of SOCE. The potential role of SOCE in PCOS pathogenesis remains unclear. Methods: The expression of STIMs and Orais in granulosa cells (GCs) derived from 83 patients with PCOS and 83 controls were analyzed, respectively, by using quantitative reverse transcription polymerase chain reaction. Binary regression analysis was used to identify the factors affecting PCOS after adjusted by body mass index and age. Pearson correlation analysis was used to determine the association between PCOS phenotypes and SOCE genes expression. Results: Significantly increased expression of STIM1, STIM2, Orai1, and Orai2 were observed in patients with PCOS compared with controls (P = 0.037, P = 0.004, P ≤ 0.001, and P = 0.013, respectively), whereas the expression of Orai3 was decreased (P = 0.003). In addition, the expression levels of STIMs and Orais were identified as the factors affecting PCOS (P < 0.05). The expressions of these genes were correlated with hormone level and antral follicle count (P < 0.05). Conclusions: For the first time, our findings indicated that the elements of SOCE were differently expressed, where STIM1, STIM2, Orai1, and Orai2 significantly increased, whereas Orai3 decreased in PCOS GCs, which might be dominantly involved in dysfunction of ovarian GCs and hormonal changes in PCOS.


Subject(s)
Polycystic Ovary Syndrome , Female , Gene Expression , Granulosa Cells/metabolism , Hormones/metabolism , Humans , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism
11.
World J Surg Oncol ; 20(1): 212, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35729577

ABSTRACT

BACKGROUND: The link between glutathione S-transferase P1 (GSTP1) c.313A > G polymorphism and chemotherapy-related adverse events remains controversial. The goal of this study was to assess how this variant affected the toxicity of anthracycline-/paclitaxel-based chemotherapy in patients with breast cancer. METHODS: This study retrospectively investigated pharmacogenetic associations of GSTP1 c.313A > G with chemotherapy-related adverse events in 142 breast cancer patients who received anthracycline and/or paclitaxel chemotherapy. RESULTS: There were 61 (43.0%), 81 (57.0%), 43 (30.3%), and 99 (69.7%) patients in the T0-T2, T3-T4, N0-N1, and N2-N3 stages, respectively. There were 108 (76.1%) patients in clinical stages I-III and 34 (23.9%) patients in clinical stage IV. The numbers of patients with luminal A, luminal B, HER2 + , and triple-negative breast cancer (TNBC) were 10 (7.0%), 77 (54.2%), 33 (23.2%), and 22 (15.5%), respectively. The numbers of patients who carried GSTP1 c.313A > G A/A, A/G, and G/G genotypes were 94 (66.2%), 45 (31.7%), and 3 (2.1%), respectively. There were no statistically significant differences in the proportion of certain toxicities in patients with A/G, G/G, and A/G + G/G genotypes, except for neutropenia, in which the proportion of patients with A/G + G/G (χ2 = 6.586, P = 0.035) genotypes was significantly higher than that with the AA genotype. The logistic regression analysis indicated that GSTP1 c.313A > G mutation (A/G + G/G vs. A/A genotype) (adjusted OR 4.273, 95% CI 1.141-16.000, P = 0.031) was an independent variable associated with neutropenia. CONCLUSIONS: The findings of this study indicate that the GSTP1 c.313A > G mutation is an independent risk factor for neutropenia hematotoxicity in breast cancer patients induced by anthracycline-/paclitaxel-based chemotherapy.


Subject(s)
Breast Neoplasms , Neutropenia , Anthracyclines/adverse effects , Antibiotics, Antineoplastic/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Genotype , Glutathione S-Transferase pi/genetics , Glutathione Transferase/genetics , Glutathione Transferase/therapeutic use , Humans , Mutation , Neutropenia/chemically induced , Neutropenia/genetics , Paclitaxel/adverse effects , Retrospective Studies , Risk Factors
13.
J Hazard Mater ; 424(Pt C): 127625, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34857400

ABSTRACT

The ubiquitous and growing global reliance on rare earth elements (REEs) for modern technology and the need for reliable domestic sources underscore the rising trend in REE-related research. Adsorption-based methods for REE recovery from liquid waste sources are well-positioned to compete with those of solvent extraction, both because of their expected lower negative environmental impact and simpler process operations. Functionalized silica represents a rising category of low cost and stable sorbents for heavy metal and REE recovery. These materials have collectively achieved high capacity and/or high selective removal of REEs from ideal solutions and synthetic or real coal wastewater and other leachate sources. These sorbents are competitive with conventional materials, such as ion exchange resins, activated carbon; and novel polymeric materials like ion-imprinted particles and metal organic frameworks (MOFs). This critical review first presents a data mining analysis for rare earth element recovery publications indexed in Web of science, highlighting changes in REE recovery research foci and confirming the sharply growing interest in functionalized silica sorbents. A detailed examination of sorbent formulation and operation strategies to selectively separate heavy (HREE), middle (MREE), and light (LREE) REEs from the aqueous sources is presented. Selectivity values for sorbents were largely calculated from available figure data and gauged the success of the associated strategies, primarily: (1) silane-grafted ligands, (2) impregnated ligands, and (3) bottom-up ligand/silica hybrids. These were often accompanied by successful co-strategies, especially bite angle control, site saturation, and selective REE elution. Recognizing the need to remove competing fouling metals to achieve purified REE "baskets," we highlight techniques for eliminating these species from acid mine drainage (AMD) and suggest a novel adsorption-based process for purified REE extraction that could be adapted to different water systems.


Subject(s)
Metals, Rare Earth , Silicon Dioxide , Acids , Adsorption , Coal
14.
Sci Total Environ ; 806(Pt 3): 151324, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34749967

ABSTRACT

Due to the influence of climate change and extensive grazing, a large proportion of steppe grassland has been degraded worldwide. The Chinese government initiated a series of grassland restoration programs to reverse the degradation. However, the limiting factors and the restoration potential remain unknown. Here we present a process-based model to assess the restoration gap (RG) defined as maximum biomass differences between non-degraded and degraded grasslands with different degrees of soil and vegetation degradation. The process-based model Agricultural Production Systems Simulator (APSIM) was evaluated utilizing observation data from both typical and meadow steppes under natural conditions in terms of phenology, dynamics of above-ground biomass and soil water content. Scenario analysis and sensitivity analysis were subsequently performed to address the RG and controlling factors during 1969-2018. The results showed that the calibrated model performed well with r > 0.75 and model efficiency factor EF > 0.5 for all the simulation components. According to our model results, the RG was larger in typical steppe compared to that of meadow steppe and it increased with increasing soil and/or vegetation degradation, to ~60% under extremely degraded scenarios. Both soil and vegetation degradation led to reduced water use efficiency, with an elevated proportion of soil evaporation to evapotranspiration (Es/ET), however, the limiting factor for RG varied. The degradation of soil water holding capacity contributed more to RG regardless of climate conditions for typical steppe in all years and for meadow steppe in dry years. In wet years the importance of vegetation coverage reduction increased for RG in meadow steppe, where the relative importance of vegetation coverage (valued at 62.8%) was 25.6% higher than that of soil degradation. Our results demonstrated the importance of considering climate variations when developing protection and restoration programs for grassland ecosystems.


Subject(s)
Ecosystem , Grassland , Biomass , China , Climate Change , Soil
15.
PeerJ ; 9: e12276, 2021.
Article in English | MEDLINE | ID: mdl-34721975

ABSTRACT

BACKGROUND: Breast invasive carcinoma (BRCA) is a commonly occurring malignant tumor. Zinc finger proteins (ZNFs) constitute the largest transcription factor family in the human genome and play a mechanistic role in many cancers' development. The prognostic value of ZNFs has yet to be approached systematically for BRCA. METHODS: We analyzed the data of a training set from The Cancer Genome Atlas (TCGA) database and two validation cohort from GSE20685 and METABRIC datasets, composed of 3,231 BRCA patients. After screening the differentially expressed ZNFs, univariate Cox regression, LASSO, and multiple Cox regression analysis were performed to construct a risk-based predictive model. ESTIMATE algorithm, single-sample gene set enrichment analysis (ssGSEA), and gene set enrichment analyses (GSEA) were utilized to assess the potential relations among the tumor immune microenvironment and ZNFs in BRCA. RESULTS: In this study, we profiled ZNF expression in TCGA based BRCA cohort and developed a novel prognostic model based on 14 genes with ZNF relations. This model was composed of high and low-score groups for BRCA classification. Based upon Kaplan-Meier survival curves, risk-status-based prognosis illustrated significant differences. We integrated the 14 ZNF-gene signature with patient clinicopathological data for nomogram construction with accurate 1-, 3-, and 5-overall survival predictive capabilities. We then accessed the Genomics of Drug Sensitivity in Cancer database for therapeutic drug response prediction of signature-defined BRCA patient groupings for our selected TCGA population. The signature also predicts sensitivity to chemotherapeutic and molecular-targeted agents in high- and low-risk patients afflicted with BRCA. Functional analysis suggested JAK STAT, VEGF, MAPK, NOTCH TOLL-like receptor, NOD-like receptor signaling pathways, apoptosis, and cancer-based pathways could be key for ZNF-related BRCA development. Interestingly, based on the results of ESTIMATE, ssGSEA, and GSEA analysis, we elucidated that our ZNF-gene signature had pivotal regulatory effects on the tumor immune microenvironment for BRCA. CONCLUSION: Our findings shed light on the potential contribution of ZNFs to the pathogenesis of BRCA and may inform clinical practice to guide individualized treatment.

16.
Int J Gen Med ; 14: 7371-7380, 2021.
Article in English | MEDLINE | ID: mdl-34744450

ABSTRACT

PURPOSE: Although the burden of breast cancer remains especially high in rural China, data on the clinicopathological characteristics and prevalence of the breast cancer susceptibility gene 1/2 (BRCA1/2) mutations in patients with breast cancer remain limited. We investigated the clinicopathological characteristics, changing patterns, and prevalence of BRCA1/2 mutations in patients with breast cancer. PATIENTS AND METHODS: The clinicopathological characteristics of 3712 women with pathologically confirmed primary breast cancer treated at Meizhou People's Hospital between January 2005 and December 2018 were evaluated. The prevalence of BRCA1/2 mutations in 340 patients with breast cancer diagnosed between January 2017 and September 2018 was also evaluated. RESULTS: The median age at diagnosis was 49±10.5 (range, 20-94) years. Positivity for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) was observed in 59.0%, 52.5%, and 24.9% of patients, respectively. Time trend analysis revealed that an increasing trend was observed for age at diagnosis (p = 0.001), proportion of patients without a reproductive history (p < 0.001), postmenopausal patients (p = 0.001), invasive pathological cancer type (p = 0.008), ER-positive rate (p < 0.001), PR-positive rate (p = 0.008), and HER2-positive rate (p < 0.001). Compared with patients without BRCA1/2 mutations, those with BRCA1/2 mutations were more likely to have a family history of breast or ovarian cancer (p < 0.001) and have triple-negative breast cancer (TNBC) (p < 0.001). Family history of breast or ovarian cancer (odds ratio [OR], 103.58; 95% confidence interval [CI], 20.58-521.45; p < 0.001) and TNBC subtype (OR, 5.97; 95% CI, 1.16-30.90; p = 0.033) were independent predictors for BRCA1/2 mutation. CONCLUSION: The clinicopathological characteristics of patients with breast cancer in this rural area have changed during the past decade. BRCA1/2 testing should be performed in patients with breast cancer with a family history of breast or ovarian cancer and TNBC.

17.
Bioengineered ; 12(2): 12070-12086, 2021 12.
Article in English | MEDLINE | ID: mdl-34787047

ABSTRACT

Long non-coding RNA (lncRNA) prostate cancer-associated transcript 18 (PCAT18) is a potential diagnostic target for adenocarcinoma. However, its role in triple-negative breast cancer (TNBC) remains largely unknown. Based on data from an online database, a significant decline in lncRNA PCAT18 was observed in patients with TNBC subtype compared to a population with normal breast tissue. Patients with TNBC with high PCAT18 levels presented good outcomes. Patients with TNBC with high PCAT18 had a lower rate of lymph node-positive metastasis than those with low PCAT18. PCAT18-upregulation inhibited, while PCAT18-downregulation promoted, migration and expression of matrix metalloproteinases 9/2 (MMP9/MMP2) and uridylyl phosphate adenosine (uPA) in TNBC cells. Activating transcription factor 7 (ATF7) was positively associated with PCAT18, and ATF7-inhibition abrogated the anti-migration effects of PCAT18 on TNBC cells. Mechanistically, miR-103a-3p directly targeted and inhibited ATF7 expression. PCAT18 competitively sponges miR-103a-3p, promoting the expression of ATF7. Exogenous PCAT18 was associated with lower incidence of lung metastasis followed by the upregulation of ATF7, which was prevented by the treatment of miR-103a-3p mimics. Collectively, PCAT18 was expressed at low levels in TNBC, and PCAT18 could sponge miR-103a-3p and promote ATF7 expression, resulting in prevention of TNBC metastasis. Thus, PCAT18 can serve as a predictive factor for patients with metastatic TNBC.


Subject(s)
Activating Transcription Factors/genetics , Lung Neoplasms/secondary , MicroRNAs/metabolism , RNA, Long Noncoding/metabolism , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Up-Regulation/genetics , Activating Transcription Factors/metabolism , Base Sequence , Cell Line, Tumor , Cell Movement/genetics , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Male , MicroRNAs/genetics , Middle Aged , RNA, Long Noncoding/genetics
18.
J Clin Invest ; 131(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34428181

ABSTRACT

There is an urgent need to identify the cellular and molecular mechanisms responsible for severe COVID-19 that results in death. We initially performed both untargeted and targeted lipidomics as well as focused biochemical analyses of 127 plasma samples and found elevated metabolites associated with secreted phospholipase A2 (sPLA2) activity and mitochondrial dysfunction in patients with severe COVID-19. Deceased COVID-19 patients had higher levels of circulating, catalytically active sPLA2 group IIA (sPLA2-IIA), with a median value that was 9.6-fold higher than that for patients with mild disease and 5.0-fold higher than the median value for survivors of severe COVID-19. Elevated sPLA2-IIA levels paralleled several indices of COVID-19 disease severity (e.g., kidney dysfunction, hypoxia, multiple organ dysfunction). A decision tree generated by machine learning identified sPLA2-IIA levels as a central node in the stratification of patients who died from COVID-19. Random forest analysis and least absolute shrinkage and selection operator-based (LASSO-based) regression analysis additionally identified sPLA2-IIA and blood urea nitrogen (BUN) as the key variables among 80 clinical indices in predicting COVID-19 mortality. The combined PLA-BUN index performed significantly better than did either one alone. An independent cohort (n = 154) confirmed higher plasma sPLA2-IIA levels in deceased patients compared with levels in plasma from patients with severe or mild COVID-19, with the PLA-BUN index-based decision tree satisfactorily stratifying patients with mild, severe, or fatal COVID-19. With clinically tested inhibitors available, this study identifies sPLA2-IIA as a therapeutic target to reduce COVID-19 mortality.


Subject(s)
COVID-19/blood , COVID-19/mortality , Group II Phospholipases A2/blood , SARS-CoV-2/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Child , Disease-Free Survival , Female , Humans , Male , Middle Aged , Severity of Illness Index , Survival Rate
19.
Acta Biomater ; 127: 131-145, 2021 06.
Article in English | MEDLINE | ID: mdl-33812074

ABSTRACT

Cartilage regeneration is a complex physiological process. Synovial macrophages play a critical immunomodulatory role in the acute inflammatory response surrounding joint injury. Due to the contrasting differences and heterogeneity of macrophage, the phenotype of macrophages are the key determinants of the healing response after cartilage injury. Biomaterials derived from extracellular matrix have been used for the repair and reconstruction of a variety of tissues by modulating the host macrophage response. However, the immunomodulatory effect of decellularized cartilage extracellular matrix (ECM) on macrophages has not been elucidated. It is necessary to clarify the immunomodulatory properties of decellularized cartilage matrix (DCM) to guide the design of cartilage regeneration materials. Here, we prepared porcine articular cartilage derived DCM and determined the response of mouse bone marrow-derived macrophages (BMDMs) to the pepsin-solubilized DCM (PDCM) in vitro. Macrophages activated by the PDCM could promote bone marrow-derived mesenchymal stem cells (BMSCs) invasion, migration, proliferation, and chondrogenic differentiation. Then, we verified that early optimization of the immunomodulatory effects of the cell-free DCM scaffold using IL-4 in vivo could achieve good cartilage regeneration in a rat knee osteochondral defect model. Therefore, this decellularized cartilage ECM scaffold combined with accurate and active immunomodulatory strategies provides a new approach for the development of cartilage regeneration materials. STATEMENT OF SIGNIFICANCE: This work reports a decellularized cartilage extracellular matrix (DCM) scaffold combined with an accurate and active immunomodulatory strategy to improve cartilage regeneration. Our findings demonstrated that the pepsin-solubilized DCM (PDCM) activated bone marrow-derived macrophages to polarize to a constructive macrophage phenotype. These polarized macrophages promoted bone marrow-derived mesenchymal stem cell invasion, migration, proliferation, and chondrogenic differentiation. DCM scaffolds combined with early-stage intra-articular injection of IL-4 created a wound-healing microenvironment and improved cartilage regeneration in a rat knee osteochondral defect model.


Subject(s)
Cartilage, Articular , Interleukin-4 , Animals , Chondrogenesis , Extracellular Matrix , Macrophages , Mice , Rats , Swine , Tissue Engineering , Tissue Scaffolds
20.
medRxiv ; 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33655264

ABSTRACT

There is an urgent need to identify cellular and molecular mechanisms responsible for severe COVID-19 disease accompanied by multiple organ failure and high mortality rates. Here, we performed untargeted/targeted lipidomics and focused biochemistry on 127 patient plasma samples, and showed high levels of circulating, enzymatically active secreted phospholipase A 2 Group IIA (sPLA 2 -IIA) in severe and fatal COVID-19 disease compared with uninfected patients or mild illness. Machine learning demonstrated that sPLA 2 -IIA effectively stratifies severe from fatal COVID-19 disease. We further introduce a PLA-BUN index that combines sPLA 2 -IIA and blood urea nitrogen (BUN) threshold levels as a critical risk factor for mitochondrial dysfunction, sustained inflammatory injury and lethal COVID-19. With the availability of clinically tested inhibitors of sPLA 2 -IIA, our study opens the door to a precision intervention using indices discovered here to reduce COVID-19 mortality.

SELECTION OF CITATIONS
SEARCH DETAIL