Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Adv Mater ; : e2401538, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738793

ABSTRACT

The identification of metastasis "seeds," isolated tumor cells (ITCs), is of paramount importance for the prognosis and tailored treatment of metastatic diseases. The conventional approach to clinical ITCs diagnosis through invasive biopsies is encumbered by the inherent risks of overdiagnosis and overtreatment. This underscores the pressing need for noninvasive ITCs detection methods that provide histopathological-level insights. Recent advancements in ultra-high-field (UHF) magnetic resonance imaging (MRI) have ignited hope for the revelation of minute lesions, including the elusive ITCs. Nevertheless, currently available MRI contrast agents are susceptible to magnetization-induced strong T2-decaying effects under UHF conditions, which compromises T1 MRI capability and further impedes the precise imaging of small lesions. Herein, this study reports a structural defect-enabled magnetic neutrality nanoprobe (MNN) distinguished by its paramagnetic properties featuring an exceptionally low magnetic susceptibility through atomic modulation, rendering it almost nonmagnetic. This unique characteristic effectively mitigates T2-decaying effect while concurrently enhancing UHF T1 contrast. Under 9 T MRI, the MNN demonstrates an unprecedentedly low r2/r1 value (≈1.06), enabling noninvasive visualization of ITCs with an exceptional detection threshold of ≈0.16 mm. These high-performance MNNs unveil the domain of hitherto undetectable minute lesions, representing a significant advancement in UHF-MRI for diagnostic purposes and fostering comprehensive metastasis research.

2.
Adv Sci (Weinh) ; : e2306671, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639383

ABSTRACT

Cancer metastasis is the leading cause of mortality in patients with hepatocellular carcinoma (HCC). To meet the rapid malignant growth and transformation, tumor cells dramatically increase the consumption of nutrients, such as amino acids. Peptide transporter 1 (PEPT1), a key transporter for small peptides, has been found to be an effective and energy-saving intracellular source of amino acids that are required for the growth of tumor cells. Here, the role of PEPT1 in HCC metastasis and its underlying mechanisms is explored. PEPT1 is upregulated in HCC cells and tissues, and high PEPT1 expression is associated with poor prognosis in patients with HCC. PEPT1 overexpression dramatically promoted HCC cell migration, invasion, and lung metastasis, whereas its knockdown abolished these effects both in vitro and in vivo. Mechanistic analysis revealed that high PEPT1 expression increased cellular dipeptides in HCC cells that are responsible for activating the MAP4K4/G3BP2 signaling pathway, ultimately facilitating the phosphorylation of G3BP2 at Thr227 and enhancing HCC metastasis. Taken together, these findings suggest that PEPT1 acts as an oncogene in promoting HCC metastasis through dipeptide-induced MAP4K4/G3BP2 signaling and that the PEPT1/MAP4K4/G3BP2 axis can serve as a promising therapeutic target for metastatic HCC.

4.
Acta Pharm Sin B ; 14(3): 1132-1149, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38486992

ABSTRACT

Cancer, a complex and heterogeneous disease, arises from genomic instability. Currently, DNA damage-based cancer treatments, including radiotherapy and chemotherapy, are employed in clinical practice. However, the efficacy and safety of these therapies are constrained by various factors, limiting their ability to meet current clinical demands. Metal nanoparticles present promising avenues for enhancing each critical aspect of DNA damage-based cancer therapy. Their customizable physicochemical properties enable the development of targeted and personalized treatment platforms. In this review, we delve into the design principles and optimization strategies of metal nanoparticles. We shed light on the limitations of DNA damage-based therapy while highlighting the diverse strategies made possible by metal nanoparticles. These encompass targeted drug delivery, inhibition of DNA repair mechanisms, induction of cell death, and the cascading immune response. Moreover, we explore the pivotal role of physicochemical factors such as nanoparticle size, stimuli-responsiveness, and surface modification in shaping metal nanoparticle platforms. Finally, we present insights into the challenges and future directions of metal nanoparticles in advancing DNA damage-based cancer therapy, paving the way for novel treatment paradigms.

5.
J Orthop Surg Res ; 19(1): 155, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429720

ABSTRACT

BACKGROUND: Sports-related ACL (anterior cruciate ligament) injuries are frequent. Successful management requires early diagnosis and treatment. One of the clinical tests used to identify ACL damage is the lever sign test. This meta-analysis aimed to assess the lever sign test's diagnostic efficacy for ACL injuries. METHODS: An extensive investigation of the Cochrane Library, Embase, and PubMed databases was conducted until April 2023. Studies assessing the lever sign test's diagnostic efficacy for ACL injuries were also included. A bivariate random-effects model was employed to acquire the pooled estimates of diagnostic odds ratios, specificity, positive and negative likelihood ratios, sensitivity, and curves of the summary receiver operating characteristic (SROC). RESULTS: The meta-analysis comprised twelve investigations with a total of 1365 individuals. The lever sign test's combined sensitivity and specificity for the purpose of diagnosing injuries to the ACL were 0.810 (95% confidence interval [CI] 0.686-0.893) and 0.784 (95% CI 0.583-0.904), respectively. The positive and negative likelihood ratios were 3.148 (95% CI 1.784-5.553) and 0.210 (95% CI 0.084-0.528), respectively. The study revealed a diagnostic odds ratio of 17.656, with a 95% CI ranging from 4.800 to 64.951. The SROC curve's area was determined to be 0.912 (95% CI 0.857-0.967). CONCLUSION: With high specificity and sensitivity, the lever sign test is a reliable diagnostic modality for ACL injuries. However, the test should be used in combination with other diagnostic tests to increase the accuracy of the diagnosis. Further investigations are warranted to assess the clinical practicability of the lever sign test in various populations and settings.


Subject(s)
Anterior Cruciate Ligament Injuries , Humans , Anterior Cruciate Ligament Injuries/diagnosis , Anterior Cruciate Ligament , Sensitivity and Specificity , ROC Curve , Databases, Factual
6.
Nano Lett ; 24(13): 3851-3857, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38502010

ABSTRACT

A two-dimensional (2D) quantum electron system is characterized by quantized energy levels, or subbands, in the out-of-plane direction. Populating higher subbands and controlling the intersubband transitions have wide technological applications such as optical modulators and quantum cascade lasers. In conventional materials, however, the tunability of intersubband spacing is limited. Here we demonstrate electrostatic population and characterization of the second subband in few-layer InSe quantum wells, with giant tunability of its energy, population, and spin-orbit coupling strength, via the control of not only layer thickness but also the out-of-plane displacement field. A modulation of as much as 350% or over 250 meV is achievable, underscoring the promise of InSe for tunable infrared and THz sources, detectors, and modulators.

7.
Adv Sci (Weinh) ; 11(18): e2309748, 2024 May.
Article in English | MEDLINE | ID: mdl-38460157

ABSTRACT

Pulmonary delivery of therapeutic agents has been considered the desirable administration route for local lung disease treatment. As the latest generation of therapeutic agents, nucleic acid has been gradually developed as gene therapy for local diseases such as asthma, chronic obstructive pulmonary diseases, and lung fibrosis. The features of nucleic acid, specific physiological structure, and pathophysiological barriers of the respiratory tract have strongly affected the delivery efficiency and pulmonary bioavailability of nucleic acid, directly related to the treatment outcomes. The development of pharmaceutics and material science provides the potential for highly effective pulmonary medicine delivery. In this review, the key factors and barriers are first introduced that affect the pulmonary delivery and bioavailability of nucleic acids. The advanced inhaled materials for nucleic acid delivery are further summarized. The recent progress of platform designs for improving the pulmonary delivery efficiency of nucleic acids and their therapeutic outcomes have been systematically analyzed, with the application and the perspectives of advanced vectors for pulmonary gene delivery.


Subject(s)
Genetic Therapy , Nucleic Acids , Humans , Nucleic Acids/administration & dosage , Genetic Therapy/methods , Transfection/methods , Administration, Inhalation , Lung Diseases/therapy , Lung Diseases/genetics , Gene Transfer Techniques , Lung/metabolism , Animals
8.
Electrophoresis ; 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38308502

ABSTRACT

Active electric-driven droplet manipulation in digital microfluidics constitutes a promising domain owing to the unique and programmable wettability inherent in sessile ionic droplets. The coupling between the electric field and flow field enables precise control over wetting characteristics and droplet morphology. This study delves into the deformation phenomena of ionic sessile ferrofluid droplets in ambient air induced by uniform electric fields. Under the assumption of a pinned mode throughout the process, the deformation is characterized by variations in droplet height and contact angle in response to the applied electric field intensity. A numerical model is formulated to simulate the deformation dynamics of ferrofluid droplets, employing the phase field method for tracking droplet deformation. The fidelity of the numerical outcomes is assessed through the validation process, involving a comparison of droplet geometric deformations with corresponding experimental results. The impact of the electric field on the deformation of dielectric droplets is modulated by parameters such as electric field strength and droplet size. Through meticulously designed experiments, the substantial influence of both field strength and droplet size is empirically verified, elucidating the behavior of ionic sessile droplets. Considering the interplay of electric force, viscous force, and interfacial tension, the heightened field intensity is observed to effectively reduce the contact angle, augment droplet height, and intensify internal droplet flow. Under varying electric field conditions, droplets assume diverse shapes, presenting a versatile approach for microfluidic operations. The outcomes of this research hold significant guiding implications for microfluidic manipulation, droplet handling, and sensing applications.

9.
Nat Commun ; 15(1): 460, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212655

ABSTRACT

Targeted assembly of nanoparticles in biological systems holds great promise for disease-specific imaging and therapy. However, the current manipulation of nanoparticle dynamics is primarily limited to organic pericyclic reactions, which necessitate the introduction of synthetic functional groups as bioorthogonal handles on the nanoparticles, leading to complex and laborious design processes. Here, we report the synthesis of tyrosine (Tyr)-modified peptides-capped iodine (I) doped CuS nanoparticles (CuS-I@P1 NPs) as self-catalytic building blocks that undergo self-propelled assembly inside tumour cells via Tyr-Tyr condensation reactions catalyzed by the nanoparticles themselves. Upon cellular internalization, the CuS-I@P1 NPs undergo furin-guided condensation reactions, leading to the formation of CuS-I nanoparticle assemblies through dityrosine bond. The tumour-specific furin-instructed intracellular assembly of CuS-I NPs exhibits activatable dual-modal imaging capability and enhanced photothermal effect, enabling highly efficient imaging and therapy of tumours. The robust nanoparticle self-catalysis-regulated in situ assembly, facilitated by natural handles, offers the advantages of convenient fabrication, high reaction specificity, and biocompatibility, representing a generalizable strategy for target-specific activatable biomedical imaging and therapy.


Subject(s)
Nanoparticles , Neoplasms , Humans , Furin , Phototherapy , Neoplasms/diagnostic imaging , Neoplasms/therapy , Nanoparticles/chemistry , Catalysis , Copper/chemistry
10.
Angew Chem Int Ed Engl ; 63(10): e202318948, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38212253

ABSTRACT

Ultra-high field (UHF) magnetic resonance imaging (MRI) has emerged as a focal point of interest in the field of cancer diagnosis. Despite the ability of current paramagnetic or superparamagnetic smart MRI contrast agents to selectively enhance tumor signals in low-field MRI, their effectiveness at UHF remains inadequate due to inherent magnetism. Here, we report a ligand-mediated magnetism-conversion nanoprobe (MCNP) composed of 3-mercaptopropionic acid ligand-coated silver-gadolinium bimetallic nanoparticles. The MCNP exhibits a pH-dependent magnetism conversion from ferromagnetism to diamagnetism, facilitating tunable nanomagnetism for pH-activatable UHF MRI. Under neutral pH, the thiolate (-S- ) ligands lead to short τ'm and increased magnetization of the MCNPs. Conversely, in the acidic tumor microenvironment, the thiolate ligands are protonated and transform into thiol (-SH) ligands, resulting in prolonged τ'm and decreased magnetization of the MCNP, thereby enhancing longitudinal relaxivity (r1) values at UHF MRI. Notably, under a 9 T MRI field, the pH-sensitive changes in Ag-S binding affinity of the MCNP lead to a remarkable (>10-fold) r1 increase in an acidic medium (pH 5.0). In vivo studies demonstrate the capability of MCNPs to amplify MRI signal of hepatic tumors, suggesting their potential as a next-generation UHF-tailored smart MRI contrast agent.


Subject(s)
Magnetic Resonance Imaging , Neoplasms , Humans , Ligands , Magnetic Resonance Imaging/methods , Contrast Media , Hydrogen-Ion Concentration , Tumor Microenvironment
11.
Clin Transl Med ; 14(1): e1521, 2024 01.
Article in English | MEDLINE | ID: mdl-38279895

ABSTRACT

BACKGROUND: One-carbon (1C) metabolism is a metabolic network that plays essential roles in biological reactions. In 1C metabolism, a series of nutrients are used to fuel metabolic pathways, including nucleotide metabolism, amino acid metabolism, cellular redox defence and epigenetic maintenance. At present, 1C metabolism is considered the hallmark of cancer. The 1C units obtained from the metabolic pathways increase the proliferation rate of cancer cells. In addition, anticancer drugs, such as methotrexate, which target 1C metabolism, have long been used in the clinic. In terms of immunotherapy, 1C metabolism has been used to explore biomarkers connected with immunotherapy response and immune-related adverse events in patients. METHODS: We collected numerous literatures to explain the roles of one-carbon metabolism in cancer immunotherapy. RESULTS: In this review, we focus on the important pathways in 1C metabolism and the function of 1C metabolism enzymes in cancer immunotherapy. Then, we summarise the inhibitors acting on 1C metabolism and their potential application on cancer immunotherapy. Finally, we provide a viewpoint and conclusion regarding the opportunities and challenges of targeting 1C metabolism for cancer immunotherapy in clinical practicability in the future. CONCLUSION: Targeting one-carbon metabolism is useful for cancer immunotherapy.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Metabolic Networks and Pathways , Carbon/metabolism , Carbon/therapeutic use
12.
Environ Int ; 183: 108389, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38118213

ABSTRACT

Herein, the trapping effectiveness of N95, filter KN95, medical surgical masks (MSMs), and disposable medical masks (DMMs) against 19 airborne traditional and novel organophosphate esters (OPEs) was evaluated. Laboratory simulations (n = 24 for each type of mask) showed that time-dependent accumulation of ∑19OPEs on the four types of masks ranged between 30.1 and 86.6 ng in 24 h, with the highest and lowest median amounts trapped by the N95 masks (53.3 ng) and DMMs (43.2 ng), respectively. The trapping efficiency of the four types of masks for ∑19OPEs decreased over time from 84 % to 39 % in 24 h, with N95 masks showing the highest median efficiency (70 %). Further, field investigations were conducted in five types of microenvironments (train, hospital, bus, supermarket, and canteen), and an analysis of 200 samples showed that ∑19OPEs were accumulated in the masks with a variable amount from 3.7 to 117 ng/mask. Consistent with the laboratory simulations, the N95 masks (29.0 ng/mask) exhibited the highest hourly median amount of trapped OPEs, followed by the KN95 masks (24.5 ng/mask), MSMSs (17.4 ng/mask), and DMMs (15.8 ng/mask). Triethyl phosphate (TEP), tris(1-chloro-2-propyl) phosphate (TCIPP), tri-n-butyl phosphate (TNBP), and cresyl diphenyl phosphate (CDP) as well as 4-isopropylphenyl diphenyl phosphate (4IPPDPP) and 2,4-diisopropylphenyl diphenyl phosphate (24DIPPDPP) were the most commonly detected traditional and novel OPEs. Based on the amount of OPEs trapped on the masks, we estimated the concentration of ∑19OPEs in the train microenvironment to be the highest (222 ng/m3), which is approximately 2-5 times higher than that in the other microenvironments. The results of this study prove that masks can effectively protect humans from exposure to OPEs and act as low-cost indicators of indoor contamination.


Subject(s)
Biphenyl Compounds , Flame Retardants , Masks , Humans , Flame Retardants/analysis , Esters/analysis , Organophosphates/analysis , Phosphates/analysis , Environmental Monitoring , China
13.
Adv Mater ; 36(13): e2310404, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38149464

ABSTRACT

The alpha-synuclein (α-syn) oligomers hold a central role in the pathology of Parkinson's disease (PD). Achieving accurate detection of α-syn oligomers in vivo presents a promising avenue for early and accurate diagnosis of PD. Magnetic resonance imaging (MRI), with non-invasion and exceptional tissue penetration, offers a potent tool for visualizing α-syn oligomers in vivo. Nonetheless, ensuring diagnostic specificity remains a formidable challenge. Herein, a novel MRI probe (ASOSN) is introduced, which encompasses highly sensitive antiferromagnetic nanoparticles functionalized with single-chain fragment variable antibodies, endowing it with the capacity for discerning recognition and binding to α-syn oligomers and triggering a switchable T1-T2 MRI signal. Significantly, ASOSN possesses the unique capability to accurately discriminate α-syn oligomers from neuroinflammation in vivo. Moreover, ASOSN facilitates the non-invasive and precise visualizing of endogenous α-syn oligomers in living systems. This innovative design heralds the development of a non-invasive visualization strategy for α-syn oligomers, marking a pivotal advancement for early and accurate diagnosis of PD.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , alpha-Synuclein/metabolism
14.
Pharmacol Ther ; 250: 108527, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37703952

ABSTRACT

Medulloblastoma (MB) is a major pediatric malignant brain tumor that arises in the cerebellum. MB tumors exhibit highly heterogeneous driven by diverse genetic alterations and could be divided into four major subgroups based on their different biological drivers and molecular features (Wnt, Sonic hedgehog (Shh), group 3, and group 4 MB). Even though the therapeutic strategies for each MB subtype integrate their pathogenesis and were developed to focus on their specific target sites, the unexpected drug non-selective cytotoxicity, low drug accumulation in the brain, and complexed MB tumor microenvironment still be huge obstacles to achieving satisfied MB therapeutic efficiency. This review discussed the current advances in modern MB therapeutic strategy development. Through the recent advances in knowledge of the origin, molecular pathogenesis of MB subtypes and their current therapeutic barriers, we particularly reviewed the current development in advanced MB therapeutic strategy committed to overcome MB treatment obstacles, focusing on novel signaling pathway targeted therapeutic agents and their combination discovery, advanced drug delivery systems design, and MB immunotherapy strategy development.

15.
Plant Physiol ; 193(4): 2430-2441, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37590954

ABSTRACT

Endosperm cell number is critical in determining grain size in maize (Zea mays). Here, zma-miR159 overexpression led to enlarged grains in independent transgenic lines, suggesting that zma-miR159 contributes positively to maize grain size. Targeting of ZmMYB74 and ZmMYB138 transcription factor genes by zma-miR159 was validated using 5' RACE and dual-luciferase assay. Lines in which ZmMYB74 was knocked out using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) presented a similar enlarged grain phenotype as those with zma-miR159 overexpression. Downstream genes regulating cell division were identified through DNA affinity purification sequencing using ZmMYB74 and ZmMYB138. Our results suggest that zma-miR159-ZmMYB modules act as an endosperm development hub, participating in the division and proliferation of endosperm cells.


Subject(s)
Transcription Factors , Zea mays , Transcription Factors/genetics , Transcription Factors/metabolism , Zea mays/genetics , Zea mays/metabolism , Endosperm/genetics , Endosperm/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Base Sequence
16.
PeerJ ; 11: e15844, 2023.
Article in English | MEDLINE | ID: mdl-37581117

ABSTRACT

Background: Osimertinib, as third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), is the first-line treatment approved to treat advanced T790M mutation-positive tumors. Triazole antifungals are therapeutic drugs for cancer patients to reduce the risk of opportunistic fungal infections. Our objective was to investigate whether three triazole antifungals (voriconazole, itraconazole, and fluconazole) could change the pharmacokinetics of osimertinib in rats. Methods: The adult male Sprague-Dawley rats were randomly divided into four groups (n = 6): control (0.3% CMC-Na), and voriconazole (20 mg/kg), itraconazole (20 mg/kg), or fluconazole (20 mg/kg) combined with osimertinib (10 mg/kg) group. Tail vein blood samples were collected into heparin tubes at various time points within 0-48 h after osimertinib administration. Osimrtinib's plasma concentration was detected using HPLC-MS/MS system equipped with a Waters XBridge C18 column, with the mobile phase consisting of acetonitrile and 0.2% formic acid water at a flow rate of 0.5 mL/min. Results: Co-administration with voriconazole or fluconazole increased the Cmax of osimertinib by 58.04% and 53.45%, respectively; the AUC0-t increased by 62.56% and 100.98%, respectively. However, when co-administered with itraconazole, the Cmax and AUC0-t of osimertinib only increased by 13.91% and 34.80%, respectively. Conclusions: Our results revealed that the pharmacokinetics of osimertinib were significantly changed by voriconazole and fluconazole in rats, whereas it was slightly affected by itraconazole. This work will contribute to a more comprehensive understanding of the pharmacokinetic properties of osimertinib when co-administered with triazole antifungals.


Subject(s)
Itraconazole , Lung Neoplasms , Male , Rats , Animals , Itraconazole/pharmacology , Voriconazole/pharmacology , Fluconazole/pharmacology , Antifungal Agents/pharmacology , Cytochrome P-450 CYP3A Inhibitors , Tandem Mass Spectrometry , ErbB Receptors , Rats, Sprague-Dawley , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors , Mutation , Triazoles/pharmacokinetics
17.
Adv Sci (Weinh) ; 10(29): e2303058, 2023 10.
Article in English | MEDLINE | ID: mdl-37596721

ABSTRACT

Structural biomimicry is an intelligent approach for developing lightweight, strong, and tough materials (LSTMs). Current fabrication technologies, such as 3D printing and two-photon lithography often face challenges in constructing complex interlaced structures, such as the sinusoidal crossed herringbone structure that contributes to the ultrahigh strength and fracture toughness of the dactyl club of peacock mantis shrimps. Herein, bioinspired LSTMs with laminated or herringbone structures is reported, by combining textile processing and silk fiber "welding" techniques. The resulting biomimetic silk LSTMs (BS-LSTMs) exhibit a remarkable combination of lightweight with a density of 0.6-0.9 g cm-3 , while also being 1.5 times stronger and 16 times more durable than animal horns. These findings demonstrate that BS-LSTMs are among the toughest natural materials made from silk proteins. Finite element simulations further reveal that the fortification and hardening of BS-LSTMs arise primarily from the hierarchical organization of silk fibers and mechanically transferable meso-interfaces. This study highlights the rational, cost-effective, controllable mesostructure, and transferable strategy of integrating textile processing and fiber "welding" techniques for the fabrication of BS-LSTMs with advantageous structural and mechanical properties. These findings have significant implications for a wide range of applications in biomedicine, mechanical engineering, intelligent textiles, aerospace industries, and beyond.


Subject(s)
Biomimetics , Silk , Animals , Silk/chemistry , Biomimetics/methods , Textiles
18.
Electrophoresis ; 44(23): 1879-1888, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37409390

ABSTRACT

Active magnetic regulation is an emerging subject due to the special and programmable wettability of the sessile ferrofluid droplet. The interaction between liquid and externally applied magnetic field gives rise to controllable spreading and thus evaporation. This work reports the experimental and numerical results of the natural evaporation of a ferrofluid droplet under the effect of a nonuniform magnetic field. The evaporation process of droplets is described into two stages in terms of the geometric distortion and the appearance of the deposition pattern. The presence of the magnetic field leads to a transition of droplet drying from the disk shape with a ring to multiple peaks. A numerical model is established to simulate the evaporation process of ferrofluid droplets with the arbitrary Lagrangian-Eulerian method for tracking droplet deformation. The increasing magnetic flux could effectively enlarge the contact radius and enhance the internal flow of the ferrofluid droplet, thus promoting the evaporation process. The numerical results are verified by comparing the droplet geometry deformation with the experimental results. In both the numerical and experimental investigations, the externally applied magnetic field shortens the process of ferrofluid droplet evaporation. The design and optimization of the magnetic field play an important role in regulating ferrofluid droplet evaporation, which in turn facilitates technological advances in industries such as evaporative cooling and inkjet printing.


Subject(s)
Colloids , Magnetic Fields , Physical Phenomena , Phase Transition , Printing
19.
Chem Biomed Imaging ; 1(4): 340-355, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37501793

ABSTRACT

DNA-mediated programming is emerging as an effective technology that enables controlled dynamic assembly/disassembly of inorganic nanocrystals (NC) with precise numbers and spatial locations for biomedical imaging applications. In this review, we will begin with a brief overview of the rules of NC dynamic assembly driven by DNA ligands, and the research progress on the relationship between NC assembly modes and their biomedical imaging performance. Then, we will give examples on how the driven program is designed by different interactions through the configuration switching of DNA-NC conjugates for biomedical applications. Finally, we will conclude with the current challenges and future perspectives of this emerging field. Hopefully, this review will deepen our knowledge on the DNA-guided precise assembly of NCs, which may further inspire the future development of smart chemical imaging devices and high-performance biomedical imaging probes.

20.
Am J Nucl Med Mol Imaging ; 13(2): 70-76, 2023.
Article in English | MEDLINE | ID: mdl-37214266

ABSTRACT

Uterine adenosarcoma is a rare gynecological malignancy with no specific symptoms, and the optimal management is still inconclusive. Herein we present a case of uterine adenosarcoma in a 38-year-old woman with a good prognosis and review of literatures. The patient presented with abnormal vaginal bleeding with no special medical history. Sonographic scan revealed a heterogeneous echoic mass in the cavity, indicating a polypus or a submucous myoma. The pathology based on the specimen after the hysteroscopic tumor excision suggested diagnosis of uterine adenosarcoma. Subsequently, the patient received pelvic MRI scan before surgery. MRI identified a patchy lesion at the cervix-lower endometrial cavity with low signal in T1WI and a mixed high T2 signal in T2WI, with no sign of metastasis. Then total abdominal hysterectomy with bilateral salpingo-oopherectomy plus pelvic lymph node dissection was performed and 6 cycles of chemotherapy were administered. The patient remains disease-free on follow-up to date, more than 15 months after chemotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...