Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
Add more filters











Publication year range
1.
J Am Chem Soc ; 146(36): 25101-25107, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39196903

ABSTRACT

Tailoring the surface ligands of metal nanoclusters is important for engineering unique configurations of metal nanoclusters. Thiacalix[4]arene has found extensive applications in the construction of metal nanoclusters. In this investigation, we present the synthesis and characterization of the first all-calixarene-protected silver nanoclusters, [Ag(CH3CN)4]2[Ag44(BTCA)6] (Ag44, H4BTCA = p-tert-butylthiacalix[4]arene). Single-crystal X-ray structural analysis reveals that all silver atoms are in a face-centered cubic (fcc) arrangement. The formation of such an fcc structure is attributed to the selectively passivation on {100} facets by BTCA4-. Thiacalixarene substantially facilitates the stability of Ag44 due to its multiple coordination sites and bulkiness. Mass spectrometry and theoretical calculations reveal that Ag44 is a superatomic silver nanocluster with 22 free electrons in the following configuration: 1S21P61D61F22S21D4. This work not only elucidates the impact of macrocyclic ligands on the stabilization of silver clusters but also furnishes an approach for assembling atomically precise fcc nanoclusters.

2.
Nat Commun ; 15(1): 7214, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39174541

ABSTRACT

It is challenging to attain strong near-infrared (NIR) emissive gold nanoclusters. Here we show a rod-shaped cluster with the composition of [Au28(p-MBT)14(Hdppa)3](SO3CF3)2 (1 for short, Hdppa is N,N-bis(diphenylphosphino)amine, p-MBT is 4-methylbenzenethiolate) has been synthesized. Single crystal X-ray structural analysis reveals that it has a rod-like face-centered cubic (fcc) Au22 kernel built from two interpenetrating bicapped cuboctahedral Au15 units. 1 features NIR luminescence with an emission maximum at 920 nm, and the photoluminescence quantum yield (PLQY) is 12%, which is 30-fold of [Au21(m-MBT)12(Hdppa)2]SO3CF3 (2, m-MBT is 3-methylbenzenethiolate) with a similar composition and 60-fold of Au30S(S­t­Bu)18 with a similar structure. time-dependent DFT(TDDFT)calculations reveal that the luminescence of 1 is associated with the Au22 kernel. The small Stokes shift of 1 indicates that it has a very small excited state structural distortion, leading to high radiative decay rate (kr) probability. The emission of cluster 1 is a mixture of phosphorescence and thermally activated delayed fluorescence(TADF), and the enhancement of the NIR emission is mainly due to the promotion of kr rather than the inhibition of knr. This work demonstrates that the metal kernel and the surface structure are both very important for cluster-based NIR luminescence materials.

3.
Angew Chem Int Ed Engl ; 63(40): e202410827, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38965048

ABSTRACT

Due to the stability issue, It is difficult to prepare a silver nanocluster bearing functional sites, especially at a large scale. We report the synthesis and structure of a stable silver nanocluster bearing multiple surface aldehyde groups [Ag21(Ph2PO2)10(p-CHOPhC≡C)6]SbF6, which allows for postsynthesis modification such as surface functionalization through aldimine condensation to give homochiral clusters. Remarkably, the preparation of this cluster can be done in ~90 % high yield at gram scale, which facilitates further studies and potential applications. Through DFT calculations and geometric structure analysis, the high stability of this cluster is attributed to the geometric closure and electronic structure. This is the first time that an effective one-pot method has been developed to synthesize functional silver nanoclusters in high yield. The title cluster will be useful in the development of a variety of cluster-based materials.

4.
Chemistry ; 30(42): e202401094, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38797717

ABSTRACT

A 'passivated precursor' approach is developed for the efficient synthesis and isolation of all-alkynyl-protected gold nanoclusters. Direct reduction of dpa-passivated precursor Au-dpa (Hdpa=2,2'-dipyridylamine) in one-pot under ambient conditions gives a series of clusters including Au22(C≡CR)18 (R=-C6H4-2-F), Au36(C≡CR)24, Au44(C≡CR)28, Au130(C≡CR)50, and Au144(C≡CR)60. These clusters can be well separated via column chromatography. The overall isolation yield of this series of clusters is 40 % (based on gold), which is much improved in comparison with previous approaches. It is notable that the molecular structure of the giant cluster Au130(C≡CR)50 is revealed, which presents important information for understanding the structure of the mysterious Au130 nanoclusters. Theoretical calculations indicated Au130(C≡CR)50 has a smaller HOMO-LUMO gap than Au130(S-C6H4-4-CH3)50. This facile and reliable synthetic approach will greatly accelerate further studies on all-alkynyl-protected gold nanoclusters.

5.
Angew Chem Int Ed Engl ; 63(29): e202404798, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38713516

ABSTRACT

A gold(I)-cluster-based twin-cage has been constructed by post-clustering covalent modification of a hexa-aldehyde cluster precursor with triaminotriethylamines. The cages-on-cluster structure has double cavities and four binding sites, which show site-discriminative binding for silver(I) and copper(I) guests. The guests in the tripodal hats affect the luminescence of the cluster: the tetra-silver(I) host-guest complex is weakly red-emissive, while the bis-copper(I)-bis-silver(I) one is non-emissive but is a stimuli-responsive supramolecule. The copper(I) ion inside the tri-imine cavity is oxidation sensitive, which enables the release of the bright emissive precursor cluster triggered by H2O2 solution. The hybridization of a cluster with cavities to construct a cluster-based cage presents an innovative concept for functional cluster design, and the post-clustering covalent modification opens up new avenues for finely tuning the properties of clusters.

6.
Science ; 383(6680): 326-330, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38236955

ABSTRACT

Metal nanoclusters have emerged as promising near-infrared (NIR)-emissive materials, but their room-temperature photoluminescence quantum yield (PLQY), especially in solution, is often low (<10%). We studied the photophysics of Au22(tBuPhC≡C)18 (Au22) and its alloy counterpart Au16Cu6(tBuPhC≡C)18 (Au16Cu6) (where tBu is tert-butyl and Ph is phenyl) and found that copper (Cu) doping suppressed the nonradiative decay (~60-fold less) and promoted intersystem crossing rate (~300-fold higher). The Au16Cu6 nanocluster exhibited >99% PLQY in deaerated solution at room temperature with an emission maximum at 720 nanometers tailing to 950 nanometers and 61% PLQY in the oxygen-saturated solution. The approach to achieve near-unity PLQY could enable the development of highly emissive metal cluster materials.

7.
Chemistry ; 30(11): e202301948, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38081801

ABSTRACT

The application of supramolecular templates in aligning atomically precise heterometal arrays is important for pursuing functional materials. Herein, we report that a bilayered supramolecular tri-deprotonated melamine dimer functions as an effective template in the construction of a heterometallic gold(I)-silver(I) macrocyclic cluster [µ6 -(C3 N6 H3 )3- ]2 -AuI 6 AgI 6 . X-ray single crystal structural analysis showed that a crown-like AuI 6 AgI 6 macrocycle is aligned around two parallelly stacked µ6 -(C3 N6 H3 )3- moieties hold together with π-π interactions. Theoretical calculations revealed that the [µ6 -(C3 N6 H3 )3- ]2 motif dominantly contributes to the near-occupied orbitals in the electronic structure, which is closely related to its luminescence properties. This work demonstrates that the supramolecular templates containing multiple symmetric binding sites may present a facile approach in the construction of functional metal clusters.

8.
Chem Asian J ; 18(19): e202300605, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37550250

ABSTRACT

A facile strategy that directly reduces alkynyl-silver precursors and copper salts for the synthesis of bimetallic nanoclusters using the weak reducing agent Ph2 SiH2 is demonstrated. Two alkynyl-protected concentric-shell nanoclusters, (Ph4 P)2 [Ag22 Cu12 (C≡CR)28 ] and (Ph4 P)3 [Ag42 Cu12 Cl(C≡CR)36 ] (Ag22 Cu12 and Ag42 Cu12 Cl, R=bis(trifluoromethyl)phenyl), were successfully obtained and characterized by single-crystal X-ray diffraction and electro-spray ionization mass spectrometry. For the first time, a hybrid 55-atom two-shell Mackay icosahedron was found in Ag42 Cu12 Cl, which is icosahedral M54 Cl instead of M55 . The incorporation of a chloride in the metal icosahedron contributes to the stability of the cluster from both electronic and geometric aspects. Alkynyl ligands show various binding-modes including linear "RC≡C-Cu-C≡CR" staple motifs.

9.
Angew Chem Int Ed Engl ; 62(29): e202304134, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37211537

ABSTRACT

The reduction of alkynyl-silver and phosphine-silver precursors with a weak reducing reagent Ph2 SiH2 led to the formation of a novel silver nanocluster [Ag93 (PPh3 )6 (C≡CR)50 ]3+ (R=4-CH3 OC6 H4 ), which is the largest structurally characterized cluster of clusters. This disc-shaped cluster has a Ag69 kernel consisting of a bicapped hexagonal prismatic Ag15 unit wrapped by six Ino decahedra through edge-sharing. This is the first time that Ino decahedra are used as a building block to assemble a cluster of clusters. Moreover, the central silver atom has a coordination number of 14, which is the highest in metal nanoclusters. This work provides a diverse metal packing pattern in metal nanoclusters, which is helpful for understanding metal cluster assembling mechanisms.

10.
J Am Chem Soc ; 145(22): 12255-12263, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37246940

ABSTRACT

Chiral metal nanoclusters have recently been attracting great attention. It is challenging to realize asymmetric catalysis via atomically precise metal nanoclusters. Herein, we report the synthesis and total structure determination of chiral clusters [Au7Ag8(dppf)3(l-/d-proline)6](BF4)2 (l-/d-Au7Ag8). Superatomic clusters l-/d-Au7Ag8 display intense and mirror-image Cotton effects in their CD spectra. Density functional theory (DFT) calculations were carried out to understand the correlation between electronic structures and the optical activity of the enantiomeric pair. Surprisingly, the incorporation of proline in a metal nanocluster can significantly promote the catalytic efficiency in asymmetric Aldol reactions. The increase of catalytic activity of Au7Ag8 in comparison with organocatalysis by proline is attributed to the cooperative effect of the metal core and prolines, showing the advantages of the integration of metal catalysis and organocatalysis in a metal nanocluster.

SELECTION OF CITATIONS
SEARCH DETAIL