Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Med (Berl) ; 99(3): 383-402, 2021 03.
Article in English | MEDLINE | ID: mdl-33409554

ABSTRACT

Endoplasmic reticulum (ER) stress is a common threat to photoreceptors during the pathogenesis of chronic retinopathies and often results in irreversible visual impairment. 2,3,5,6-Tetramethylpyrazine (TMP), which possesses many beneficial pharmacological activities, is a potential drug that could be used to protect photoreceptors. In the present study, we found that the cellular growth rate of 661 W cells cultured under low glucose conditions was lower than that of control cells, while the G2/M phase of the cell cycle was longer. We further found that the mitochondrial membrane potential (ΔΨm) was lower and that ER stress factor expression was increased in 661 W cells cultured under low glucose conditions. TMP reversed these trends. Visual function and cell counts in the outer nuclear layer (ONL) were low and the TUNEL-positive rate in the ONL was high in a C3H mouse model of spontaneous retinal degeneration. Similarly, visual function was decreased, and the TUNEL-positive rate in the ONL was increased in fasted C57/BL6j mice compared with control mice. On the other hand, ER stress factor expression was found to be increased in the retinas of both mouse models, as shown by reverse transcription real-time PCR (RT-qPCR) and western blotting. TMP reversed the physiological and molecular biological variations observed in both mouse models, and ATF4 expression was enhanced again. Further investigation by using western blotting illustrated that the proportion of insoluble prion protein (PRP) versus soluble PRP was reduced both in vitro and in vivo. Taken together, these results suggest that TMP increased the functions of photoreceptors by alleviating ER stress in vitro and in vivo, and the intrinsic mechanism was the ATF4-mediated inhibition of PRP aggregation. TMP may potentially be used clinically as a therapeutic agent to attenuate the functional loss of photoreceptors during the pathogenesis of chronic retinopathies. KEY MESSAGES: • Already known: TMP is a beneficial drug mainly used in clinic to enhance organ functions, and the intrinsic mechanism is still worthy of exploring. • New in the study: We discovered that TMP ameliorated retinal photoreceptors function via ER stress alleviation, which was promoted by ATF4-mediated inhibition of PRP aggregation. • Application prospect: In prospective clinical practices, TMP may potentially be used in the clinic as a therapeutic agent to attenuate the photoreceptors functional reduction in chronic retinopathies.


Subject(s)
Activating Transcription Factor 4/physiology , Endoplasmic Reticulum Stress/drug effects , Prion Proteins/drug effects , Protein Aggregates/drug effects , Protein Aggregation, Pathological/prevention & control , Pyrazines/pharmacology , Retinal Cone Photoreceptor Cells/drug effects , Retinal Degeneration/prevention & control , Animals , Cell Line, Tumor , Disease Models, Animal , Drug Evaluation, Preclinical , Electroretinography , Eye Proteins/biosynthesis , Eye Proteins/genetics , Fasting , Female , Glucose/pharmacology , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Prion Proteins/chemistry , Protein Aggregation, Pathological/metabolism , Retina/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Degeneration/physiopathology , Single-Blind Method , Solubility , Specific Pathogen-Free Organisms , Transcription, Genetic/drug effects
2.
J Cell Mol Med ; 2020 Oct 08.
Article in English | MEDLINE | ID: mdl-33090698

ABSTRACT

Retinoblastoma (RB) is a common intraocular malignancy in children. Due to the poor prognosis of RB, it is crucial to search for efficient diagnostic and therapeutic strategies. Studies have shown that methyltransferase-like 3 (METTL3), a major RNA N (6)-adenosine methyltransferase, is closely related to the initiation and development of cancers. Nevertheless, whether METTL3 is associated with RB remains unexplored. Therefore, we investigated the function and mechanisms of METTL3 in the regulation of RB progression. We manipulated METTL3 expression in RB cells. Then, cell proliferation, apoptosis, migration and invasion were analysed. We also analysed the expression of PI3K/AKT/mTOR pathway members. Finally, we incorporated subcutaneous xenograft mouse models into our studies. The results showed that METTL3 is highly expressed in RB patients and RB cells. We found that METTL3 knockdown decreases cell proliferation, migration and invasion of RB cells, while METTL3 overexpression promotes RB progression in vitro and in vivo. Moreover, two downstream members of the PI3K/AKT/mTOR pathway, P70S6K and 4EBP1, were affected by METTL3. Our study revealed that METTL3 promotes the progression of RB through PI3K/AKT/mTOR pathways in vitro and in vivo. Targeting the METTL3/PI3K/AKT/mTOR signalling axis could be a promising therapeutic strategy for the treatment of RB.

3.
Mol Cancer ; 19(1): 138, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32894144

ABSTRACT

BACKGROUND: Inactivation of the tumor suppressor p53 is critical for pathogenesis of glioma, in particular glioblastoma multiforme (GBM). MDM2, the main negative regulator of p53, binds to and forms a stable complex with p53 to regulate its activity. Hitherto, it is unclear whether the stability of the p53/MDM2 complex is affected by lncRNAs, in particular circular RNAs that are usually abundant and conserved, and frequently implicated in different oncogenic processes. METHODS: RIP-seq and RIP-qPCR assays were performed to determine the most enriched lncRNAs (including circular RNAs) bound by p53, followed by bioinformatic assays to estimate the relevance of their expression with p53 signaling and gliomagenesis. Subsequently, the clinical significance of CDR1as was evaluated in the largest cohort of Chinese glioma patients from CGGA (n = 325), and its expression in human glioma tissues was further evaluated by RNA FISH and RT-qPCR, respectively. Assays combining RNA FISH with protein immunofluorescence were performed to determine co-localization of CDR1as and p53, followed by CHIRP assays to confirm RNA-protein interaction. Immunoblot assays were carried out to evaluate protein expression, p53/MDM2 interaction and p53 ubiquitination in cells in which CDR1as expression was manipulated. After AGO2 or Dicer was knocked-down to inhibit miRNA biogenesis, effects of CDR1as on p53 expression, stability and activity were determined by immunoblot, RT-qPCR and luciferase reporter assays. Meanwhile, impacts of CDR1as on DNA damage were evaluated by flow cytometric assays and immunohistochemistry. Tumorigenicity assays were performed to determine the effects of CDR1as on colony formation, cell proliferation, the cell cycle and apoptosis (in vitro), and on tumor volume/weight and survival of nude mice xenografted with GBM cells (in vivo). RESULTS: CDR1as is found to bind to p53 protein. CDR1as expression decreases with increasing glioma grade and it is a reliable independent predictor of overall survival in glioma, particularly in GBM. Through a mechanism independent of acting as a miRNA sponge, CDR1as stabilizes p53 protein by preventing it from ubiquitination. CDR1as directly interacts with the p53 DBD domain that is essential for MDM2 binding, thus disrupting the p53/MDM2 complex formation. Induced upon DNA damage, CDR1as may preserve p53 function and protect cells from DNA damage. Significantly, CDR1as inhibits tumor growth in vitro and in vivo, but has little impact in cells where p53 is absent or mutated. CONCLUSIONS: Rather than acting as a miRNA sponge, CDR1as functions as a tumor suppressor through binding directly to p53 at its DBD region to restrict MDM2 interaction. Thus, CDR1as binding disrupts the p53/MDM2 complex to prevent p53 from ubiquitination and degradation. CDR1as may also sense DNA damage signals and form a protective complex with p53 to preserve p53 function. Therefore, CDR1as depletion may play a potent role in promoting tumorigenesis through down-regulating p53 expression in glioma. Our results broaden further our understanding of the roles and mechanism of action of circular RNAs in general and CDR1as in particular, and can potentially open up novel therapeutic avenues for effective glioma treatment.


Subject(s)
Glioblastoma/genetics , Proto-Oncogene Proteins c-mdm2/genetics , RNA, Circular/genetics , RNA, Long Noncoding/genetics , Tumor Suppressor Protein p53/genetics , Animals , Apoptosis/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , DNA Damage/genetics , Gene Expression Regulation, Neoplastic/genetics , Glioblastoma/pathology , Humans , Mice , Transfection
4.
Biomed Res Int ; 2020: 6061894, 2020.
Article in English | MEDLINE | ID: mdl-32337261

ABSTRACT

BACKGROUND: Posterior capsule opacification (PCO), a complication of extracapsular lens extraction surgery that causes visual impairment, is characterized by aberrant proliferation and epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs). Curcumin, exerting inhibitive effects on cell proliferation and EMT in cancer, serves as a possible antidote towards PCO. METHODS: Cellular proliferation of LECs after treatment of curcumin was measured with MTT assay and flow cytometry. The transcriptional and expressional levels of proteins related to proliferation and EMT of LECs were quantified by western blotting and real-time PCR. RESULTS: Curcumin was found to suppress the proliferation of LECs by inducing G2/M arrest via possible inhibition of cell cycle-related proteins including CDK1, cyclin B1, and CDC25C. It had also inactivated proliferation pathways involving ERK1/2 and Akt pathways in LECs. On the other hand, curcumin downregulated the EMT of LECs through blocking the TGF-ß/Smad pathway and interfering Notch pathway which play important roles in PCO. CONCLUSIONS: This study shows that curcumin could suppress the proliferation and EMT in LECs, and it might be a potential therapeutic protection against visual loss induced by PCO.


Subject(s)
Cell Proliferation/drug effects , Curcumin/pharmacology , Epithelial Cells/drug effects , Epithelial-Mesenchymal Transition/drug effects , Apoptosis/drug effects , Blotting, Western , CDC2 Protein Kinase/antagonists & inhibitors , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Cell Cycle/drug effects , Cell Division , Cyclin B1/antagonists & inhibitors , Cyclin B1/genetics , Cyclin B1/metabolism , Dose-Response Relationship, Drug , Epithelial Cells/metabolism , G2 Phase , Gene Expression Regulation , Humans , Lens, Crystalline/drug effects , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta2/antagonists & inhibitors , Transforming Growth Factor beta2/metabolism
5.
Front Mol Neurosci ; 13: 2, 2020.
Article in English | MEDLINE | ID: mdl-32038167

ABSTRACT

Herpes simplex encephalitis (HSE) caused by herpes simplex virus 1 (HSV-1) infection can lead to a high mortality rate and severe neurological sequelae. The destruction of the blood-brain barrier (BBB) is an important pathological mechanism for the development of HSE. However, the specific mechanism underlying the BBB destruction remains unclear. Our previous study found that the Golgi apparatus (GA) plays a crucial role in maintaining the integrity of the BBB. Therefore, this present study aimed to investigate the role of the GA in the destruction of the BBB and its underlying mechanisms. Mouse brain endothelial cells (Bend.3) were cultured to establish a BBB model in vitro, and then infected with HSV-1. The results showed that HSV-1 infection caused downregulation of the Golgi-associated protein GM130, accompanied by Golgi fragmentation, cell apoptosis, and downregulation of tight junction proteins occludin and claudin 5. Knockdown of GM130 with small interfering RNA in uninfected Bend.3 cells triggered Golgi fragmentation, apoptosis, and downregulation of occludin and claudin 5. However, overexpression of GM130 in HSV-1 infected Bend.3 cells by transient transfection partially attenuated the aforementioned damage caused by HSV-1 infection. When the pan-caspase inhibitor Z-VAD-fmk was used after HSV-1 infection to inhibit apoptosis, the protein levels of GM130, occludin and claudin 5 were partially restored. Taken together, these observations indicate that HSV-1 infection of Bend.3 cells triggers a GM130-mediated Golgi stress response that is involved in apoptosis, which in turn results in downregulation of occludin and claudin 5 protein levels. Meanwhile, GM130 downregulation is partially due to apoptosis triggered by HSV-1 infection. Our findings reveal an association between the GA and the BBB during HSV-1 infection and identify potentially novel targets for protecting the BBB and therapeutic approaches for patients with HSE.

6.
Front Neurol ; 10: 1271, 2019.
Article in English | MEDLINE | ID: mdl-31866928

ABSTRACT

Background: Anti-N-methyl-D-aspartate receptor (NMDAR) immunoglobulin G antibodies which exist on myelin sheaths, composed of oligodendrocytes, especially target GluN1 subunits and are highly characteristic of anti-NMDAR encephalitis which is a newly recognized autoimmune encephalitis (AE) characterized by psychiatric symptoms, behavioral abnormalities, seizures, cognitive impairment and other clinical symptoms. Myelin oligodendrocyte glycoprotein (MOG) is a type of protein which is expressed on the surface of oligodendrocytes and myelin in the central nervous system. Anti-MOG antibodies cause demyelination. In some rare reported cases, these two types of antibodies have been found to co-exist, but the underlying mechanisms remain unknown. Case presentation: Here we report cases of 4 inpatients (median age 31.5 years, age range 27-43 years) from The Second Xiangya Hospital of Central South University between March 2018 and April 2019. Two of the cases were first diagnosed as anti-NMDAR encephalitis and had developed visual impairments in the course of the dosage reduction during corticosteroid therapy. They were found at the time, to have anti-MOG antibody-positive CSF and/or serum. Another patient was diagnosed with anti-MOG inflammatory demyelinating diseases (IDDs) when he tested double positive for both anti-NMDAR and anti-MOG antibodies early in the course of his illness. Over the course of the dosage reduction during corticosteroid therapy, his symptoms deteriorated; however, anti-MOG antibody levels elevated while anti-NDMAR antibody levels remained low. The other patient had initially developed psychiatric symptoms and limb weakness. She was also double positive for anti-NMDAR and anti-MOG antibodies early in the course of her illness. However, over the course of the dosage reduction during corticosteroid therapy, her symptoms worsened and levels of both antibodies elevated. Conclusion: Anti-NMDAR and anti-MOG antibodies may coexist in rare cases. In addition, anti-NMDAR encephalitis and anti-MOG inflammatory demyelinating diseases may occur either simultaneously or in succession. Thus, when a patient is diagnosed with either of these two diseases, but exhibits symptoms of the other disease, the possibility of co-occurrence with both these diseases should be considered and the appropriate antibodies should be accurately detected to enable prompt selection of appropriate treatments by the physicians.

7.
J Cancer ; 10(16): 3778-3788, 2019.
Article in English | MEDLINE | ID: mdl-31333795

ABSTRACT

Selective covalent CDK7 inhibitor THZ1 is a promising potential anti-tumor drug in many kinds of cancers. Epithelial-mesenchymal Transition (EMT) is highly related to cancer initiation, development, invasion and metastasis and other pathogenesis processes. We treated cancer cell line Hela229 and three retinoblastoma cell lines so-RB50, WERI-Rb-1, Y79 with gradient concentration of THZ1, and found that THZ1 could inhibit cell viability and EMT, suggesting that THZ1 may be a promising drug for human cervical cancer and retinoblastoma treatment. Our results verified the role of THZ1 in EMT for the first time, however, the mechanism needs further study. Here we report that THZ1 suppresses the TGFß2 induced EMT in human SRA01/04 lens epithelial cells (LECs), rabbit primary lens epithelial cells, and whole rat lens culture semi-in vivo model. RNA-sequencing and KEGG analysis revealed that the THZ1 inhibits EMT by down-regulating phosphorylate Smad2 and Notch signaling pathway. On the other hand, we found that THZ1 could strongly inhibit LECs proliferation through G2/M phase arrest as well as attenuating of MAPK, PI3K/AKT signaling pathway. Our results uncovered the function and underlying mechanism of THZ1 in regulation of EMT, which provides a new perspective of the anti-tumor effect by THZ1 and may offer a novel treatment for PCO.

SELECTION OF CITATIONS
SEARCH DETAIL
...