Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Transl Oncol ; 24(11): 2074-2080, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35789981

ABSTRACT

Colorectal cancer (CRC) is one of the most common cancers worldwide and one of the main causes of cancer-associated mortality. At the period of diagnosis, metastases to other tissues will be present in around 30% of CRC individuals. Individuals with CRC continue to have a poor prognosis despite advances in medication. There is a growing body of literature that CRC develops as a result of the aggregation of various mutations in tumor oncogenes or suppressor genes and that diagnosing cancer in its initial phases may assist in increasing the overall lifespan of individuals with the illness. On the other hand, tumor cells may discharge exosomes in response to oncogenic mutations. By Inhibiting signaling pathways, including the Kirsten rat sarcoma virus (KRAS) mechanism, which is important in a variety of cell activities, exosomes have been shown to cause colorectal cancer in animal studies. The purpose of this review was to summarize the latest discoveries on the modulation of KRAS signaling by exosomes extracted from colorectal cancer.


Subject(s)
Colorectal Neoplasms , Exosomes , Animals , Colorectal Neoplasms/pathology , Exosomes/metabolism , Humans , Kirsten murine sarcoma virus/metabolism , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction
2.
Int J Clin Exp Med ; 8(5): 7049-58, 2015.
Article in English | MEDLINE | ID: mdl-26221242

ABSTRACT

Beclin 1 is a promoter gene for autophagy as well as a key factor for regulating tumor cell growth and death. Allelic deletion of Beclin 1 has been observed in certain triple-negative breat cancer (TNBC) cells, and it might be associated with increased proliferation and invasion in TNBC cells. In this study we investigated the relationship between Beclin 1 expression and prognosis for TNBC patients, as well as the influence on cell growth by Beclin 1 overexpression in different cultural conditions. Beclin 1 expression in TNBC tissues was measured by immunohistochemical staining and correlated with clinicopathologic parameters for TNBC patients. The plasmid of pDS-RED-C1-Beclin 1 was transfected to BT-549 and MDA-MB-231 cells and autophagy, proliferation, apoptosis, cell cycle and Epithelial-mesenchymal transition (EMT) process were measured. Results indicated that high level of Beclin 1 expression was correlated with more lymph nodes and distant metastasis but unrelated to survival rates in 5 years for TNBC patients. In vitro, overexpression of Beclin 1 improved cellular autophagy in both BT-549 and MDA-MB-231 cells, inhibited cell proliferation at normal cultural condition and increased cell survival in starvation, hypoxia or with doxorubicin stimulation. Besides, Beclin 1 overexpression decreased cell apoptosis, induced cells to be in G0/G1 phase and promoted EMT process through Wnt/ß-catenin pathway in starvation. Thus, Beclin 1 overexpression plays a double role in BT-549 and MDA-MB-231 cell growth by elevating the capability of autophagy. These findings might be useful for searching a proper method for clinical therapy of TNBC from the aspect of autophagy in future.

SELECTION OF CITATIONS
SEARCH DETAIL