Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters











Publication year range
1.
NPJ Biofilms Microbiomes ; 10(1): 84, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39266529

ABSTRACT

The role of mast cells (MCs) in ulcerative colitis (UC) development is controversial. FcεRI, the IgE high-affinity receptor, is known to activate MCs. However, its role in UC remains unclear. In our study, Anti-FcεRI showed highly diagnostic value for UC. FcεRIα knockout in mice ameliorated DSS-induced colitis in a gut microbiota-dependent manner. Increased Lactobacillus abundance in FcεRIα deficient mice showed strongly correlation with the remission of colitis. RNA sequencing indicated activation of the NLRP6 inflammasome pathway in FcεRIα knockout mice. Additionally, Lactobacillus plantarum supplementation protected against inflammatory injury and goblet cell loss, with activation of the NLRP6 inflammasome during colitis. Notably, this effect was absent when the strain is unable to produce lactic acid. In summary, colitis was mitigated in FcεRIα deficient mice, which may be attributed to the increased abundance of Lactobacillus. These findings contribute to a better understanding of the relationship between allergic reactions, microbiota, and colitis.


Subject(s)
Dextran Sulfate , Gastrointestinal Microbiome , Receptors, IgE , Animals , Mice , Colitis/prevention & control , Colitis/microbiology , Colitis/chemically induced , Colitis, Ulcerative/microbiology , Disease Models, Animal , Inflammasomes/metabolism , Lactobacillus , Lactobacillus plantarum/genetics , Lactobacillus plantarum/physiology , Mast Cells/immunology , Mice, Inbred C57BL , Mice, Knockout , Probiotics , Receptors, IgE/genetics
2.
Int Immunopharmacol ; 142(Pt A): 113031, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217888

ABSTRACT

Unprecedented progress in immune checkpoint blockade (ICB) therapy has been made in cancer treatment. However, the response to ICB therapy is limited to a small subset of patients. The development of ICB sensitizers to improve cancer immunotherapy outcomes is urgently needed. Berberine (BBR), a well-known phytochemical compound isolated from many kinds of medicinal plants such as Berberis aristata, Coptis chinensis, and Phellondendron chinense Schneid, has shown the ability to inhibit the proliferation, invasion and metastasis of cancer cells. In this study, we investigated whether BBR can enhance the therapeutic benefit of ICB for melanoma, and explored the underlying mechanisms involved. The results showed that BBR could sensitize ICB to inhibit tumor growth and increased the survival rate of mice. Moreover, BBR stimulated intracellular ROS production partially by inhibiting NQO1 activity, which induced immunogenic cell death (ICD) in melanoma, elevated the levels of damage-associated molecular patterns (DAMPs), and subsequently activated DC cells and CD8 + T cells in vitro and in vivo. In conclusion, BBR is a novel ICD inducer. BBR could enhance the therapeutic benefit of ICB for melanoma. These effects were partially mediated through the inhibition of NQO1 and ROS activation.

3.
Front Plant Sci ; 15: 1367121, 2024.
Article in English | MEDLINE | ID: mdl-39086912

ABSTRACT

Introduction: The research on plant leaf morphology is of great significance for understanding the development and evolution of plant organ morphology. As a relict plant, the G. biloba leaf morphology typically exhibits bifoliate and peltate forms. However, throughout its long evolutionary history, Ginkgo leaves have undergone diverse changes. Methods: This study focuses on the distinct "trumpet" leaves and normal fan-shaped leaves of G. biloba for analysis of their phenotypes, photosynthetic activity, anatomical observations, as well as transcriptomic and metabolomic analyses. Results: The results showed that trumpet-shaped G. biloba leaves have fewer cells, significant morphological differences between dorsal and abaxial epidermal cells, leading to a significantly lower net photosynthetic rate. Additionally, this study found that endogenous plant hormones such as GA, auxin, and JA as well as metabolites such as flavonoids and phenolic acids play roles in the formation of trumpet-shaped G. biloba leaves. Moreover, the experiments revealed the regulatory mechanisms of various key biological processes and gene expressions in the trumpet-shaped leaves of G. biloba. Discussion: Differences in the dorsal and abdominal cells of G. biloba leaves can cause the leaf to curl, thus reducing the overall photosynthetic efficiency of the leaves. However, the morphology of plant leaves is determined during the primordia leaf stage. In the early stages of leaf development, the shoot apical meristem (SAM) determines the developmental morphology of dicotyledonous plant leaves. This process involves the activity of multiple gene families and small RNAs. The establishment of leaf morphology is complexly regulated by various endogenous hormones, including the effect of auxin on cell walls. Additionally, changes in intracellular ion concentrations, such as fluctuations in Ca2+ concentration, also affect cell wall rigidity, thereby influencing leaf growth morphology.

4.
5.
Biomimetics (Basel) ; 9(8)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39194431

ABSTRACT

Biomimetic robotic fish are a novel approach to studying quiet, highly agile, and efficient underwater propulsion systems, attracting significant interest from experts in robotics and engineering. These versatile robots showcase their ability to operate effectively in various water conditions. Nevertheless, the comprehension of the swimming mechanics and the evolution of the flow field of flexible robots in counterflow regions is still unknown. This paper presents a framework for the self-propulsion of robotic fish that imitates biological characteristics. The method utilizes computational fluid dynamics to analyze the hydrodynamic efficiency of the organisms at different frequencies of tail movement, under both still and opposing flow circumstances. Moreover, this study clarifies the mechanisms that explain how changes in the aquatic environment affect the speed and efficiency of propulsion. It also examines the most effective swimming tactics for places with counterflow. The results suggest that the propulsion effectiveness of robotic fish in counterflow locations does not consistently correspond to various tail-beat frequencies. By utilizing vorticity maps, a comparative analysis can identify situations when counterflow zones improve the efficiency of propulsion.

6.
Pestic Biochem Physiol ; 203: 106009, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39084775

ABSTRACT

Fall armyworm, Spodoptera frugiperda (J. E. Smith), is a widely recognized global agricultural pest that has significantly reduced crop yields all over the world. S. frugiperda has developed resistance to various insecticides. Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides, leading to increased resistance in insect populations. However, the function of the specific P450 gene for lambda-cyhalothrin resistance in S. frugiperda was unclear. Herein, the expression patterns of 40 P450 genes in the susceptible and lambda-cyhalothrin-resistant populations were analyzed. Among them, CYP321A7 was found to be overexpressed in the resistant population, specifically LRS (resistance ratio = 25.38-fold) derived from a lambda-cyhalothrin-susceptible (SS) population and FLRS (a population caught from a field, resistance ratio = 63.80-fold). Elevated enzyme activity of cytochrome P450 monooxygenases (P450s) was observed for LRS (2.76-fold) and the FLRS (4.88-fold) as compared to SS, while no significant differences were observed in the activities of glutathione S-transferases and esterases. Furthermore, the knockdown of CYP321A7 gene by RNA interference significantly increased the susceptibility to lambda-cyhalothrin. Remarkably, the knockdown of CYP321A7 reduced the enzymatic activity of P450 by 43.7%, 31.9%, and 22.5% in SS, LRS, and FLRS populations, respectively. Interestingly, fourth-instar larvae treated with lambda-cyhalothrin at the LC30 dosage had a greater mortality rate due to RNA interference-induced suppression of CYP321A7 (with increases of 61.1%, 50.0%, and 45.6% for SS, LRS, and FLRS populations, respectively). These findings suggest a link between lambda-cyhalothrin resistance and continual overexpression of CYP321A7 in S. frugiperda larvae, emphasizing the possible importance of CYP321A7 in lambda-cyhalothrin detoxification in S. frugiperda.


Subject(s)
Cytochrome P-450 Enzyme System , Insecticide Resistance , Insecticides , Nitriles , Pyrethrins , Spodoptera , Animals , Pyrethrins/pharmacology , Pyrethrins/toxicity , Spodoptera/drug effects , Spodoptera/genetics , Nitriles/toxicity , Nitriles/pharmacology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Insecticides/pharmacology , Insecticides/toxicity , Insecticide Resistance/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , RNA Interference , Inactivation, Metabolic , Larva/drug effects , Larva/genetics
7.
Biomimetics (Basel) ; 9(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38667232

ABSTRACT

Precision control of multiple robotic fish visual navigation in complex underwater environments has long been a challenging issue in the field of underwater robotics. To address this problem, this paper proposes a multi-robot fish obstacle traversal technique based on the combination of cross-modal variational autoencoder (CM-VAE) and imitation learning. Firstly, the overall framework of the robotic fish control system is introduced, where the first-person view of the robotic fish is encoded into a low-dimensional latent space using CM-VAE, and then different latent features in the space are mapped to the velocity commands of the robotic fish through imitation learning. Finally, to validate the effectiveness of the proposed method, experiments are conducted on linear, S-shaped, and circular gate frame trajectories with both single and multiple robotic fish. Analysis reveals that the visual navigation method proposed in this paper can stably traverse various types of gate frame trajectories. Compared to end-to-end learning and purely unsupervised image reconstruction, the proposed control strategy demonstrates superior performance, offering a new solution for the intelligent navigation of robotic fish in complex environments.

8.
Biochem Pharmacol ; 223: 116122, 2024 05.
Article in English | MEDLINE | ID: mdl-38467377

ABSTRACT

Cutaneous melanoma is the deadliest form of skin cancer, and its incidence is continuing to increase worldwide in the last decades. Traditional therapies for melanoma can easily cause drug resistance, thus the treatment of melanoma remains a challenge. Various studies have focused on reversing the drug resistance. As tumors grow and progress, cancer cells face a constantly changing microenvironment made up of different nutrients, metabolites, and cell types. Multiple studies have shown that metabolic reprogramming of cancer is not static, but a highly dynamic process. There is a growing interest in exploring the relationship between melanoma andmetabolic reprogramming, one of which may belipid metabolism. This review frames the recent research progresses on lipid metabolism in melanoma.In addition, we emphasize the dynamic ability of metabolism during tumorigenesis as a target for improving response to different therapies and for overcoming drug resistance in melanoma.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/metabolism , Skin Neoplasms/metabolism , Lipid Metabolism , Metabolic Reprogramming , Drug Resistance , Lipids , Tumor Microenvironment
9.
Front Plant Sci ; 15: 1367773, 2024.
Article in English | MEDLINE | ID: mdl-38481397

ABSTRACT

Microorganisms are important members of seagrass bed ecosystems and play a crucial role in maintaining the health of seagrasses and the ecological functions of the ecosystem. In this study, we systematically quantified the assembly processes of microbial communities in fragmented seagrass beds and examined their correlation with environmental factors. Concurrently, we explored the relative contributions of species replacement and richness differences to the taxonomic and functional ß-diversity of microbial communities, investigated the potential interrelation between these components, and assessed the explanatory power of environmental factors. The results suggest that stochastic processes dominate community assembly. Taxonomic ß-diversity differences are governed by species replacement, while for functional ß-diversity, the contribution of richness differences slightly outweighs that of replacement processes. A weak but significant correlation (p < 0.05) exists between the two components of ß-diversity in taxonomy and functionality, with almost no observed significant correlation with environmental factors. This implies significant differences in taxonomy, but functional convergence and redundancy within microbial communities. Environmental factors are insufficient to explain the ß-diversity differences. In conclusion, the assembly of microbial communities in fragmented seagrass beds is governed by stochastic processes. The patterns of taxonomic and functional ß-diversity provide new insights and evidence for a better understanding of these stochastic assembly rules. This has important implications for the conservation and management of fragmented seagrass beds.

10.
Biology (Basel) ; 12(12)2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38132292

ABSTRACT

Sophora japonica L. is an important landscaping and ornamental tree species throughout southern and northern parts of China. The most common color of S. japonica petals is yellow and white. In this study, S. japonica flower color mutants with yellow and white flag petals and light purple-red wing and keel petals were used for transcriptomics and metabolomics analyses. To investigate the underlying mechanisms of flower color variation in S. japonica 'AM' mutant, 36 anthocyanin metabolites were screened in the anthocyanin-targeting metabolome. The results demonstrated that cyanidins such as cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside in the 'AM' mutant were the key metabolites responsible for the red color of the wing and keel petals. Transcriptome sequencing and differentially expressed gene (DEG) analysis identified the key structural genes and transcription factors related to anthocyanin biosynthesis. Among these, F3'5'H, ANS, UFGT79B1, bHLH, and WRKY expression was significantly correlated with the cyanidin-type anthocyanins (key regulatory factors affecting anthocyanin biosynthesis) in the flag, wing, and keel petals in S. japonica at various flower development stages.

11.
Biomimetics (Basel) ; 8(7)2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37999170

ABSTRACT

The attainment of accurate motion control for robotic fish inside intricate underwater environments continues to be a substantial obstacle within the realm of underwater robotics. This paper presents a proposed algorithm for trajectory tracking and obstacle avoidance planning in robotic fish, utilizing nonlinear model predictive control (NMPC). This methodology facilitates the implementation of optimization-based control in real-time, utilizing the present state and environmental data to effectively regulate the movements of the robotic fish with a high degree of agility. To begin with, a dynamic model of the robotic fish, incorporating accelerations, is formulated inside the framework of the world coordinate system. The last step involves providing a detailed explanation of the NMPC algorithm and developing obstacle avoidance and objective functions for the fish in water. This will enable the design of an NMPC controller that incorporates control restrictions. In order to assess the efficacy of the proposed approach, a comparative analysis is conducted between the NMPC algorithm and the pure pursuit (PP) algorithm in terms of trajectory tracking. This comparison serves to affirm the accuracy of the NMPC algorithm in effectively tracking trajectories. Moreover, a comparative analysis between the NMPC algorithm and the dynamic window approach (DWA) method in the context of obstacle avoidance planning highlights the superior resilience of the NMPC algorithm in this domain. The proposed strategy, which utilizes NMPC, demonstrates a viable alternative for achieving precise trajectory tracking and efficient obstacle avoidance planning in the context of robotic fish motion control within intricate surroundings. This method exhibits considerable potential for practical implementation and future application.

12.
ACS Nano ; 17(22): 23160-23168, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37926969

ABSTRACT

The discovery of ferromagnetism in two-dimensional (2D) van der Waals crystals has generated widespread interest. The seeking of robust 2D ferromagnets with high Curie temperature (Tc) is vitally important for next-generation spintronic devices. However, owing to the enhanced spin fluctuation and weak exchange interaction upon the reduced dimensionalities, the exploring of robust 2D ferromagnets with Tc > 300 K is highly demanded but remains challenging. In this work, we fabricated air-stable 2D Cr5Te8/CrTe2 vertical heterojunctions with Tc above 400 K by the chemical vapor deposition method. Transmission electron microscopy demonstrates a high-quality-crystalline epitaxial structure between tri-Cr5Te8 and 1T-CrTe2 with striped moiré patterns and a superior ambient stability over six months. A built-in dual-axis strain together with strong interfacial coupling cooperatively leads to a record-high Tc for the CrxTey family. A temperature-dependent spin-flip process induces the easy axis of magnetization to rotate from the out-of-plane to the in-plane direction, indicating a phase-dependent proximity coupling effect, rationally interpreted by first-principles calculations of the magnetic anisotropy of a tri-Cr5Te8 and 1T-CrTe2 monolayer. Our results provide a material realization of effectively enhancing the transition temperature of 2D ferromagnetism and manipulating the spin-flip of the easy axis, which will facilitate future spintronic applications.

13.
Ecotoxicol Environ Saf ; 267: 115669, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37944464

ABSTRACT

Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) is one of the most destructive insect pests owned strong resistance to different insecticides. Indoxacarb as a novel oxadiazine insecticide becomes the main pesticide against S. litura. DIMBOA [2,4-dihydroxy-7-methoxy-2 H-1,4-benz-oxazin-3(4 H)-one] is involved in important chemical defense processes in corn plants. However, the insects' adaptation mechanism to insecticides when exposed to defensive allelochemicals in their host plants remains unclear. Here, we assessed multi-resistance, and resistance mechanisms based on S. litura life history traits. After 18 generations of selection, indoxacarb resistance was increased by 61.95-fold (Ind-Sel) and 86.06-fold (Dim-Sel) as compared to the Lab-Sus. Also, DIMBOA-pretreated larvae developed high resistance to beta-cypermethrin, chlorpyrifos, phoxim, chlorantraniliprole, and emamectin benzoate. Meanwhile, indoxacarb (LC50) was applied to detect its impact on thirty-eight detoxification-related genes expression. The transcripts of SlituCOE073, SlituCOE009, SlituCOE074, and SlituCOE111 as well as SlGSTs5, SlGSTu1, and SlGSTe13 were considerably raised in the Ind-Sel strain. Among the twenty-three P450s, CYP6AE68, CYP321B1, CYP6B50, CYP9A39, CYP4L10, and CYP4S9v1 transcripts denoted significantly higher levels in the Ind-Sel strain, suggesting that CarEs, GSTs and P450s genes may be engaged in indoxacarb resistance. These outcomes further highlighted the importance of detoxification enzymes for S. litura gene expression and their role in responses to insecticides and pest management approaches.


Subject(s)
Insecticides , Animals , Spodoptera/physiology , Insecticides/pharmacology , Nicotiana/metabolism , Benzoxazines , Larva/metabolism , Gene Expression , Insecticide Resistance/genetics
14.
BMC Musculoskelet Disord ; 24(1): 641, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37559076

ABSTRACT

BACKGROUND: After the COVID-19 outbreak, many Chinese high school students have increased their dependence on electronic devices for studying and life, which may affect the incidence of neck and shoulder pain (NSP) in Chinese adolescents. METHODS: To evaluate the prevalence of NSP in high school students and its associated risk factors during COVID-19, a survey was conducted among 5,046 high school students in Shanghai, Qinghai, Henan and Macao during the second semester and summer vacation of the 2019-2020 academic year. The questionnaire included questions regarding demographic characteristics, the prevalence of NSP and lifestyle factors such as sedentary behavior, poor posture and electronic device usage. Univariable and multivariable logistic regression was used to analyze the possible influencing factors for neck and shoulder pain. RESULTS: A total of 4793 valid questionnaires (95.0%) were collected. The results indicated that the prevalence of NSP was 23.7% among high school students. Binary logistic regression analysis revealed that female gender (P < 0.05, OR = 1.82), grade (P < 0.05, range OR 1.40-1.51) and subject selection (P < 0.05, range OR 0.49-0.68) were risk factors for NSP in high school students. Sedentary behavior (P < 0.05, range OR 1.74-2.36), poor posture (P < 0.05, range OR 1.19-2.56), backpack weight (P < 0.05, range OR 1.17-1.88), exercise style and frequency (P < 0.05, range OR 1.18-1.31; P < 0.05, range OR 0.76-0.79, respectively), and the time spent using electronic devices (P < 0.05, range OR 1.23-1.38)had a significant correlation with NSP in high school students. CONCLUSIONS: NSP is currently very common among high school students during the outbreak of COVID-19. Sedentary behavior, poor posture and other factors have a great impact on the occurrence of NSP in high school students. Education regarding healthy lifestyle choices should be advocated for to decrease NSP among high school students, such as more physical activity, changing poor postures and reducing the amount of time spent using electronic devices.


Subject(s)
COVID-19 , Shoulder Pain , Adolescent , Humans , Female , Shoulder Pain/diagnosis , Shoulder Pain/epidemiology , Shoulder Pain/etiology , Cross-Sectional Studies , Neck Pain/etiology , Prevalence , China/epidemiology , COVID-19/epidemiology , Risk Factors , Students , Surveys and Questionnaires
15.
Front Microbiol ; 14: 1140752, 2023.
Article in English | MEDLINE | ID: mdl-37138634

ABSTRACT

The insoluble phosphorus in the soil is extremely difficult to be absorbed and used directly through the potato root system. Although many studies have reported that phosphorus-solubilizing bacteria (PSB) can promote plant growth and uptake of phosphorus, the molecular mechanism of phosphorus uptake and growth by PSB has not been investigated yet. In the present study, PSB were isolated from rhizosphere soil in soybean. The data of potato yield and quality revealed that the strain P68 was the most effective In the present study, PSB identification, potato field experiment, pot experiment and transcriptome profiling to explored the role of PSB on potato growth and related molecular mechanisms. The results showed that the P68 strain (P68) was identified as Bacillus megaterium by sequencing, with a P-solubilizing ability of 461.86 mg·L-1 after 7-day incubation in National Botanical Research Institute's Phosphate (NBRIP) medium. Compared with the control group (CK), P68 significantly increased the yield of potato commercial tubers by 17.02% and P accumulation by 27.31% in the field. Similarly, pot trials showed that the application of P68 significantly increased the biomass, total phosphorus content of the potato plants, and available phosphorus of the soil up by 32.33, 37.50, and 29.15%, respectively. Furthermore, the transcriptome profiling results of the pot potato roots revealed that the total number of bases was about 6G, and Q30 (%) was 92.35-94.8%. Compared with the CK, there were a total of 784 differential genes (DEGs) regulated when treated with P68, which 439 genes were upregulated and 345 genes were downregulated. Interestingly, most of the DEGs were mainly related to cellular carbohydrate metabolic process, photosynthesis, and cellular carbohydrate biosynthesis process. According to the KEGG pathway analysis, a total of 46 categorical metabolic pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were annotated to 101 DEGs found in potato roots. Compared with the CK, most of the DEGs were mainly enriched in glyoxylate and dicarboxylate metabolism (sot00630), nitrogen metabolism (sot00910), tryptophan metabolism (sot00380), and plant hormone signal transduction (sot04075), and these DEGs might be involved in the interactions between Bacillus megaterium P68 and potato growth. The qRT-PCR analysis of differentially expressed genes showed that inoculated treatments P68 significantly upregulated expression of the phosphate transport, nitrate transport, glutamine synthesis, and abscisic acid regulatory pathways, respectively, and the data from qRT-PCR were consistent with that obtained from RNA-seq. In summary, PSB may be involved in the regulation of nitrogen and phosphorus nutrition, glutaminase synthesis, and abscisic acid-related metabolic pathways. This research would provide a new perspective for studying the molecular mechanism of potato growth promotion by PSB in the level of gene expression and related metabolic pathways in potato roots under the application of Bacillus megaterium P68.

16.
Sheng Wu Gong Cheng Xue Bao ; 39(4): 1696-1709, 2023 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-37154333

ABSTRACT

The purpose of this study was to clone and characterize the ZFP36L1 (zinc finger protein 36-like 1) gene, clarify its expression characteristics, and elucidate its expression patterns in different tissues of goats. Samples of 15 tissues from Jianzhou big-eared goats, including heart, liver, spleen, lung and kidney were collected. Goat ZFP36L1 gene was amplified by reverse transcription-polymerase chain reaction (RT-PCR), then the gene and protein sequence were analyzed by online tools. Quantitative real-time polymerase chain reaction (qPCR) was used to detect the expression level of ZFP36L1 in intramuscular preadipocytes in different tissues and adipocytes of goat at different differentiation stages. The results showed that the length of ZFR36L1 gene was 1 224 bp, and the coding sequence (CDS) region was 1 017 bp, encoding 338 amino acids, which was a non-secretory unstable protein mainly located in nucleus and cytoplasm. Tissue expression profile showed that ZFP36L1 gene was expressed in all selected tissues. In visceral tissues, the small intestine showed the highest expression level (P < 0.01). In muscle tissue, the highest expression level was presented in longissimus dorsi muscle (P < 0.01), whereas the expression level in subcutaneous adipose tissue was significantly higher than that in other tissues (P < 0.01). The results of induced differentiation showed that the expression of this gene was up-regulated during adipogenic differentiation of intramuscular precursor adipocytes (P < 0.01). These data may help to clarify the biological function of the ZFP36L1 gene in goat.


Subject(s)
Goats , Liver , Animals , Goats/genetics , Amino Acid Sequence , Cloning, Molecular
17.
Phys Chem Chem Phys ; 25(3): 2462-2467, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36601881

ABSTRACT

We report the structure, magnetic and electrical/thermal transport properties of the antiferromagnet MnSn2. Importantly, the existence of the two antiferromagnetic states below TN2 (∼320 K) is confirmed by magnetism and electrical transport measurements. An unsaturated positive magnetoresistance up to 150% at ∼9 T was observed at 5 K, whereas the magnetoresistance becomes negative in the whole range at high temperatures (T > 74 K). Systematic investigations of the Hall transport and thermoelectric properties reveal that the hole-type carriers are the majority carriers in MnSn2. The kink around 320 K in the Seebeck coefficient originates from the effect of the antiferromagnetic phase on the band structure, while the pronounced peak around 231 K is attributed to the phonon-drag effect. The results suggest that the spin arrangement plays a vital role in the magnetic, electrical, and thermal transport properties in MnSn2.

18.
Bioresour Technol ; 367: 128241, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36332871

ABSTRACT

Chicken manure is a source of antibiotic resistance genes (ARGs) and pathogenic microbes. Mikania micrantha Kunth (MM) is an invasive plant containing phytochemicals as antimicrobial agents. To explore its impacts on ARGs and pathogen-host interactions (PHIs), MM was added to composting mixtures. The findings indicated that compared with control (CK), MM significantly improved the phytochemical abundances, particularly stilbenoids and diarylheptanoids (4.87%), and ubiquinones (2.66%) in the treatment (T) compost. Besides, significant ARGs reduction was noted, where rpoB2, RbpA, FosB1, vatC, and vatB were removed from T compost. PHIs significantly declined in T compost, where the growth of Xanthomonas citri, Streptococcus pneumoniae, Fusarium graminearum, Vibrio cholerae, and Xanthomonas campestris were inhibited. Multiple variable analyses demonstrated that temperature and pH revealed a significant role in ARGs and PHIs decline. Accordingly, this study considerably recommends MM as a promising compost additive in terms of its antimicrobial potential toward pathogenic microbes and ARGs.


Subject(s)
Composting , Mikania , Animals , Manure/analysis , Chickens/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial/genetics , Phytochemicals
19.
Anim Biotechnol ; 34(7): 3063-3073, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36244042

ABSTRACT

PDZK1-interacting protein 1(PDZK1IP1), also known as MAP17, is encoded by the PDZK1IP1 gene and is a membrane-associated protein. PDZK1IP1 have been proven to be a potent regulator of cancer cell proliferation. However, the role of PDZK1IP1 in regulating goat subcutaneous preadipocyte proliferation is unknown. Here, we cloned the full-length coding sequence of PDZK1IP1 gene, investigated the potential functional of PDZK1IP1 in goat subcutaneous preadipocyte proliferation by gaining or losing function in vitro. Our results indicated that goat PDZK1IP1 gene consists of 345 bp, encoding a protein of 114 amino acids containing a typical PDZK1IP1 (MAP17) super family domain. Overexpression of PDZK1IP1 significantly increased the number of EdU-positive cells and cell viability, and also upregulated mRNA expression of cell proliferation-associated genes including CCND1 and CDK2 in vitro cultured cells. Conversely, knockdown of PDZK1IP1 mediated by siRNA technique significantly inhibited subcutaneous preadipocyte proliferation and downregulated mRNA expression of cell proliferation-associated genes including CCNE1, CCND1 and CDK2. Collectively, these results suggested that PDZK1IP1 can promote proliferation of goat subcutaneous preadipocyte.


Subject(s)
Goats , Transcription Factors , Animals , Goats/physiology , Cells, Cultured , Transcription Factors/metabolism , Cell Proliferation/genetics , RNA, Messenger/metabolism
20.
Pestic Biochem Physiol ; 187: 105215, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36127062

ABSTRACT

Herbivore-induced plant volatiles (HIPVs) have been associated with plant-plant-herbivorous-natural enemies communication and an enhanced response to the subsequent attack. Spodoptera litura is a serious cosmopolitan pest that has developed a high level of resistance to many insecticides. However, the underlying molecular and biochemical mechanism by which HIPV priming reduces S. litura larval sensitivity to insecticides remains largely unknown. This study was conducted to explore the potential of volatile from undamaged, or artificially damaged, or S. litura-damaged tomato plants on the susceptibility of S. litura to the insecticides beta-cypermethrin indoxacarb and chlorpyrifos. We found that larvae exposed to volatile from S. litura-damaged or artificially damaged tomato plants were significantly less susceptible to the three insecticides than those exposed to volatile from undamaged tomato plants. Elevated activities of detoxifying enzymes [cytochrome P450 monooxygenases (P450s), glutathione S-transferases (GSTs), and esterases (ESTs)], were expressed in S. litura larvae exposed to volatile from S. litura-damaged tomato plants than those exposed to volatile from undamaged tomato plants. Similarly, seven detoxification-related genes [GSTs (SlGSTe1, SlGSTo1, and SlGSTe3) and P450s (CYP6B48, CYP9A40, CYP321A7, and CYP321B1)] in the midgut and fat body of larvae were up-regulated under exposure to volatile from S. litura-damaged tomato plants. Increased volatile organic compounds emissions were detected in the headspace of tomato plants damaged by S. litura compared to the undamaged plants. Collectively, these findings suggest that HIPVs can considerably reduce caterpillar susceptibility to insecticides, possibly through induction-enhanced detoxification mechanisms, and provide valuable information for implementing an effective integrated pest management strategy.


Subject(s)
Chlorpyrifos , Insecticides , Solanum lycopersicum , Volatile Organic Compounds , Animals , Chlorpyrifos/pharmacology , Cytochrome P-450 Enzyme System/genetics , Esterases , Glutathione , Herbivory , Insecticides/toxicity , Larva , Spodoptera , Transferases/pharmacology , Volatile Organic Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL