Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Life Sci ; : 122861, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925222

ABSTRACT

SARS-CoV-2 is a highly contagious pathogen that predominantly caused the COVID-19 pandemic. The persistent effects of COVID-19 are defined as an inflammatory or host response to the virus that begins four weeks after initial infection and persists for an undetermined length of time. Chronic effects are more harmful than acute ones thus, this review explored the long-term effects of the virus on various human organs, including the pulmonary, cardiovascular, and neurological, reproductive, gastrointestinal, musculoskeletal, endocrine, and lymphoid systems and found that SARS-CoV-2 adversely affects these organs of older adults. Regarding diagnosis, the RT-PCR is a gold standard method of diagnosing COVID-19; however, it requires specialized equipment and personnel for performing assays and a long time for results production. Therefore, to overcome these limitations, artificial intelligence employed in imaging and microfluidics technologies is the most promising in diagnosing COVID-19. Pharmacological and non-pharmacological strategies are the most effective treatment for reducing the persistent impacts of COVID-19 by providing immunity to post-COVID-19 patients by reducing cytokine release syndrome, improving the T cell response, and increasing the circulation of activated natural killer and CD8 T cells in blood and tissues, which ultimately reduces fever, nausea, fatigue, and muscle weakness and pain. Vaccines such as inactivated viral, live attenuated viral, protein subunit, viral vectored, mRNA, DNA, or nanoparticle vaccines significantly reduce the adverse long-term virus effects in post-COVID-19 patients; however, no vaccine was reported to provide lifetime protection against COVID-19; consequently, protective measures such as physical separation, mask use, and hand cleansing are promising strategies. This review provides a comprehensive knowledge of the persistent effects of COVID-19 on people of varying ages, as well as diagnosis, treatment, vaccination, and future preventative measures against the spread of SARS-CoV-2.

2.
Int J Biol Macromol ; 260(Pt 1): 129251, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38211908

ABSTRACT

Reactive oxygen species (ROS) play an important role in biological milieu. Recently, the rapid growth in our understanding of ROS and their promise in antibacterial applications has generated tremendous interest in the combination of ROS generators with bulk hydrogels. Hydrogels represent promising supporters for ROS generators and can locally confine the nanoscale distribution of ROS generators whilst also promoting cellular integration via biomaterial-cell interactions. This review highlights recent efforts and progress in developing hydrogels derived from biological macromolecules with embedded ROS generators with a focus on antimicrobial applications. Initially, an overview of passive and active antibacterial hydrogels is provided to show the significance of proper hydrogel selection and design. These are followed by an in-depth discussion of the various approaches for ROS generation in hydrogels. The structural engineering and fabrication of ROS-laden hydrogels are given with a focus on their biomedical applications in therapeutics and diagnosis. Additionally, we discuss how a compromise needs to be sought between ROS generation and removal for maximizing the efficacy of therapeutic treatment. Finally, the current challenges and potential routes toward commercialization in this rapidly evolving field are discussed, focusing on the potential translation of laboratory research outcomes to real-world clinical outcomes.


Subject(s)
Anti-Infective Agents , Hydrogels , Hydrogels/pharmacology , Hydrogels/chemistry , Reactive Oxygen Species , Polymers/chemistry , Anti-Bacterial Agents
3.
Elife ; 122023 Dec 19.
Article in English | MEDLINE | ID: mdl-38113081

ABSTRACT

Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ('Myomatrix arrays') that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a 'motor unit,' during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and identifying pathologies of the motor system.


Subject(s)
Motor Neurons , Primates , Rats , Mice , Animals , Motor Neurons/physiology , Electrodes , Muscle Fibers, Skeletal
4.
Comput Biol Med ; 167: 107672, 2023 12.
Article in English | MEDLINE | ID: mdl-37976820

ABSTRACT

The vast majority of people who suffer unexpected cardiac arrest are performed cardiopulmonary resuscitation (CPR) by passersby in a desperate attempt to restore life, but endeavors turn out to be fruitless on account of disqualification. Fortunately, many pieces of research manifest that disciplined training will help to elevate the success rate of resuscitation, which constantly desires a seamless combination of novel techniques to yield further advancement. To this end, we collect a specialized CPR video dataset in which trainees make efforts to behave resuscitation on mannequins independently in adherence to approved guidelines, promoting an auxiliary toolbox to assist supervision and rectification of intermediate potential issues via modern deep learning methodologies. Our research empirically views this problem as a temporal action segmentation (TAS) task in computer vision, which aims to segment an untrimmed video at a frame-wise level. Here, we propose a Prompt-enhanced hierarchical Transformer (PhiTrans) that integrates three indispensable modules, including a textual prompt-based Video Features Extractor (VFE), a transformer-based Action Segmentation Executor (ASE), and a regression-based Prediction Refinement Calibrator (PRC). The backbone preferentially derives from applications in three approved public datasets (GTEA, 50Salads, and Breakfast) collected for TAS tasks, which experimentally facilitates the model excavation on the CPR dataset. In general, we probe into a feasible pipeline that elevates the CPR instruction qualification via action segmentation equipped with novel deep learning techniques. Associated experiments on the CPR dataset advocate our resolution with surpassing 91.0% on Accuracy, Edit score, and F1 score.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Humans , Cardiopulmonary Resuscitation/education , Cardiopulmonary Resuscitation/methods , Manikins
5.
RSC Chem Biol ; 4(10): 774-784, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37799578

ABSTRACT

The opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa) causes infections that are difficult to treat, which is due to the bacterial natural resistance to antibiotics. The bacterium is also able to form a biofilm that protects the bacterium from clearance by the human immune system and leads to chronic infection. Herein, we synthesized and characterized a novel gallium compound that interferes with both the iron metabolism and quorum sensing system of P. aeruginosa to achieve a significant bactericidal activity. The compound could substantially reduce the secretion of bacterial virulence factors as well as eliminate biofilm formation. Integrative omics analysis indicates that this compound can significantly disturb the gene transcription and metabolism of P. aeruginosa. The effectiveness of the gallium compound was further validated in mammalian cell and murine skin infection models. Our study offers a new strategy to design new gallium-based antimicrobials to combat P. aeruginosa infection.

6.
Nat Commun ; 14(1): 5311, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658047

ABSTRACT

The rapid emergence of antimicrobial resistance (AMR) pathogens highlights the urgent need to approach this global burden with alternative strategies. Cefiderocol (Fetroja®) is a clinically-used sideromycin, that is utilized for the treatment of severe drug-resistant infections, caused by Gram-negative bacteria; there is evidence of cefiderocol-resistance occurring in bacterial strains however. To increase the efficacy and extend the life-span of sideromycins, we demonstrate strong synergisms between cefiderocol and metallodrugs (e.g., colloidal bismuth citrate (CBS)), against Pseudomonas aeruginosa and Burkholderia cepacia. Moreover, CBS enhances cefiderocol efficacy against biofilm formation, suppresses the resistance development in P. aeruginosa and resensitizes clinically isolated resistant P. aeruginosa to cefiderocol. Notably, the co-therapy of CBS and cefiderocol significantly increases the survival rate of mice and decreases bacterial loads in the lung in a murine acute pneumonia model. The observed phenomena are partially attributable to the competitive binding of Bi3+ to cefiderocol with Fe3+, leading to enhanced uptake of Bi3+ and reduced levels of Fe3+ in cells. Our studies provide insight into the antimicrobial potential of metallo-sideromycins.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Mice , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Load , Pseudomonas aeruginosa , Cefiderocol
7.
Cell Biosci ; 13(1): 169, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37705071

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is the most prevalent cause of chronic hepatic disease and results in non-alcoholic steatohepatitis (NASH), which progresses to fibrosis and cirrhosis. Although the Leptin deficient rodent models are widely used in study of metabolic syndrome and obesity, they fail to develop liver injuries as in patients. METHODS: Due to the high similarity with humans, we generated Leptin-deficient (Leptin-/-) pigs to investigate the mechanisms and clinical trials of obesity and NAFLD caused by Leptin. RESULTS: The Leptin-/- pigs showed increased body fat and significant insulin resistance at the age of 12 months. Moreover, Leptin-/- pig developed fatty liver, non-alcoholic steatohepatitis and hepatic fibrosis with age. Absence of Leptin in pig reduced the phosphorylation of JAK2-STAT3 and AMPK. The inactivation of JAK2-STAT3 and AMPK enhanced fatty acid ß-oxidation and leaded to mitochondrial autophagy respectively, and both contributed to increased oxidative stress in liver cells. In contrast with Leptin-/- pig, although Leptin deletion in rat liver inhibited JAK2-STAT3 phosphorylation, the activation of AMPK pathway might prevent liver injury. Therefore, ß-oxidation, mitochondrial autophagy and hepatic fibrosis did not occurred in Leptin-/- rat livers. CONCLUSIONS: The Leptin-deficient pigs presents an ideal model to illustrate the full spectrum of human NAFLD. The activity of AMPK signaling pathway suggests a potential target to develop new strategy for the diagnosis and treatment of NAFLD.

8.
bioRxiv ; 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-36865176

ABSTRACT

Neurons coordinate their activity to produce an astonishing variety of motor behaviors. Our present understanding of motor control has grown rapidly thanks to new methods for recording and analyzing populations of many individual neurons over time. In contrast, current methods for recording the nervous system's actual motor output - the activation of muscle fibers by motor neurons - typically cannot detect the individual electrical events produced by muscle fibers during natural behaviors and scale poorly across species and muscle groups. Here we present a novel class of electrode devices ("Myomatrix arrays") that record muscle activity at unprecedented resolution across muscles and behaviors. High-density, flexible electrode arrays allow for stable recordings from the muscle fibers activated by a single motor neuron, called a "motor unit", during natural behaviors in many species, including mice, rats, primates, songbirds, frogs, and insects. This technology therefore allows the nervous system's motor output to be monitored in unprecedented detail during complex behaviors across species and muscle morphologies. We anticipate that this technology will allow rapid advances in understanding the neural control of behavior and in identifying pathologies of the motor system.

10.
Bioengineering (Basel) ; 9(10)2022 10 18.
Article in English | MEDLINE | ID: mdl-36290539

ABSTRACT

The outbreak of the monkeypox virus (MPXV) in non-endemic countries is an emerging global health threat and may have an economic impact if proactive actions are not taken. As shown by the COVID-19 pandemic, rapid, accurate, and cost-effective virus detection techniques play a pivotal role in disease diagnosis and control. Considering the sudden multicountry MPXV outbreak, a critical evaluation of the MPXV detection approaches would be a timely addition to the endeavors in progress for MPXV control and prevention. Herein, we evaluate the current MPXV detection methods, discuss their pros and cons, and provide recommended solutions to the problems. We review the traditional and emerging nucleic acid detection approaches, immunodiagnostics, whole-particle detection, and imaging-based MPXV detection techniques. The insights provided in this article will help researchers to develop novel techniques for the diagnosis of MPXV.

11.
Respir Res ; 23(1): 292, 2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36309681

ABSTRACT

BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent genetic disorder, mainly characterized by the development of renal cysts, as well as various extrarenal manifestations. Previous studies have shown that ADPKD is related to bronchiectasis, while its pathogenic mechanism is unclear. In previous studies, we have generated the PKD1+/- pigs to simulate the progression of cyst formation and physiological alterations similar to those seen in ADPKD patients. METHODS: Phenotypic changes to airway epithelial cell and mesenchymal cell in PKD1+/- pigs were assessed by histological analysis. The molecular mechanisms driving these processes were investigated by using PKD1+/- pig lungs, human mesenchymal cells, and generating PKD1 deficient human epithelial cells. RESULTS: We identified bronchiectasis in PKD1+/- pigs, which is consistent with the clinical symptoms in ADPKD patients. The deficiency of PKD1 suppressed E-cadherin expression in the airway epithelial barrier, which aggravated invasion and leaded to a perpetuated inflammatory response. During this process, extracellular matrix (ECM) components were altered, which contributed to airway smooth muscle cell phenotype switch from a contractile phenotype to a proliferative phenotype. The effects on smooth muscle cells resulted in airway remodeling and establishment of bronchiectasis. CONCLUSION: To our knowledge, the PKD1+/- pig provides the first model recapitulating the pathogenesis of bronchiectasis in ADPKD. The role of PKD1 in airway epithelial suggests a potential target for development of new strategies for the diagnosis and treatment of bronchiectasis.


Subject(s)
Bronchiectasis , Polycystic Kidney, Autosomal Dominant , Humans , Swine , Animals , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/pathology , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Bronchiectasis/genetics , Epithelial Cells/metabolism , Lung/metabolism , Mutation
12.
Proc Natl Acad Sci U S A ; 119(11): e2119417119, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35263219

ABSTRACT

Colistin is considered the last-line antimicrobial for the treatment of multidrug-resistant gram-negative bacterial infections. The emergence and spread of superbugs carrying the mobile colistin resistance gene (mcr) have become the most serious and urgent threat to healthcare. Here, we discover that silver (Ag+), including silver nanoparticles, could restore colistin efficacy against mcr-positive bacteria. We show that Ag+ inhibits the activity of the MCR-1 enzyme via substitution of Zn2+ in the active site. Unexpectedly, a tetra-silver center was found in the active-site pocket of MCR-1 as revealed by the X-ray structure of the Ag-bound MCR-1, resulting in the prevention of substrate binding. Moreover, Ag+effectively slows down the development of higher-level resistance and reduces mutation frequency. Importantly, the combined use of Ag+ at a low concentration with colistin could relieve dermonecrotic lesions and reduce the bacterial load of mice infected with mcr-1­carrying pathogens. This study depicts a mechanism of Ag+ inhibition of MCR enzymes and demonstrates the potentials of Ag+ as broad-spectrum inhibitors for the treatment of mcr-positive bacterial infection in combination with colistin.


Subject(s)
Anti-Bacterial Agents , Colistin , Drug Resistance, Multiple, Bacterial , Escherichia coli Proteins , Escherichia coli , Silver , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/genetics , Microbial Sensitivity Tests , Plasmids/genetics , Silver/pharmacology
13.
Chem Sci ; 13(8): 2238-2248, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35310492

ABSTRACT

The emergence of SARS-CoV-2 variants of concern compromises vaccine efficacy and emphasizes the need for further development of anti-SARS-CoV-2 therapeutics, in particular orally administered take-home therapies. Cocktail therapy has shown great promise in the treatment of viral infection. Herein, we reported the potent preclinical anti-SARS-CoV-2 efficacy of a cocktail therapy consisting of clinically used drugs, e.g. colloidal bismuth subcitrate (CBS) or bismuth subsalicylate (BSS), and N-acetyl-l-cysteine (NAC). Oral administration of the cocktail reduced viral loads in the lung and ameliorated virus-induced pneumonia in a hamster infection model. The mechanistic studies showed that NAC prevented the hydrolysis of bismuth drugs at gastric pH via the formation of the stable component [Bi(NAC)3], and optimized the pharmacokinetics profile of CBS in vivo. Combination of bismuth drugs with NAC suppressed the replication of a panel of medically important coronaviruses including Middle East respiratory syndrome-related coronavirus (MERS-CoV), Human coronavirus 229E (HCoV-229E) and SARS-CoV-2 Alpha variant (B.1.1.7) with broad-spectrum inhibitory activities towards key viral cysteine enzymes/proteases including papain-like protease (PLpro), main protease (Mpro), helicase (Hel) and angiotensin-converting enzyme 2 (ACE2). Importantly, our study offered a potential at-home treatment for combating SARS-CoV-2 and future coronavirus infections.

14.
Cell Death Dis ; 12(12): 1086, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34789718

ABSTRACT

Transmembrane protein (TMEM) is a family of protein that spans cytoplasmic membranes and allows cell-cell and cell-environment communication. Dysregulation of TMEMs has been observed in multiple cancers. However, little is known about TMEM116 in cancer development. In this study, we demonstrate that TMEM116 is highly expressed in non-small-cell lung cancer (NSCLC) tissues and cell lines. Inactivation of TMEM116 reduced cell proliferation, migration and invasiveness of human cancer cells and suppressed A549 induced tumor metastasis in mouse lungs. In addition, TMEM116 deficiency inhibited PDK1-AKT-FOXO3A signaling pathway, resulting in accumulation of TAp63, while activation of PDK1 largely reversed the TMEM116 deficiency induced defects in cancer cell motility, migration and invasive. Together, these results demonstrate that TMEM116 is a critical integrator of oncogenic signaling in cancer metastasis.


Subject(s)
3-Phosphoinositide-Dependent Protein Kinases/metabolism , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/metabolism , Membrane Proteins/metabolism , A549 Cells , Adenocarcinoma of Lung/pathology , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Female , Humans , Lung Neoplasms/pathology , Mice , Mice, Inbred A , Mice, Inbred BALB C , Mice, Nude , Neoplasm Metastasis , Signal Transduction , Transfection
15.
Chem Sci ; 12(32): 10893-10900, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34476069

ABSTRACT

The mechanisms of action of arsenic trioxide (ATO), a clinically used drug for the treatment of acute promyelocytic leukemia (APL), have been actively studied mainly through characterization of individual putative protein targets. There appear to be no studies at a system level. Herein, we integrate metalloproteomics through a newly developed organoarsenic probe, As-AC (C20H17AsN4O3S2) with quantitative proteomics, allowing 37 arsenic binding and 250 arsenic regulated proteins to be identified in NB4, a human APL cell line. Bioinformatics analysis reveals that ATO disrupts multiple physiological processes, in particular, chaperone-related protein folding and cellular response to stress. Furthermore, we discover heat shock protein 60 (Hsp60) as a vital target of ATO. Through biophysical and cell-based assays, we demonstrate that ATO binds to Hsp60, leading to abolishment of Hsp60 refolding capability. Significantly, the binding of ATO to Hsp60 disrupts the formation of Hsp60-p53 and Hsp60-survivin complexes, resulting in degradation of p53 and survivin. This study provides significant insights into the mechanism of action of ATO at a systemic perspective, and serves as guidance for the rational design of metal-based anticancer drugs.

16.
Gene ; 798: 145792, 2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34175399

ABSTRACT

BACKGROUND: Apoptosis is a form of cell death that plays a critical role in the maintenance of tissue homeostasis involving the development and elimination of unwanted cells. Dysregulation of apoptosis appears to be associated in the pathogenesis of many human diseases. Autosomal dominant polycystic kidney disease (ADPKD) is a common monogenetic disease and is mainly caused by mutations in PKD1. Previous studies proved that increased cell death occurred in ADPKD patients and animal models. However, the role of apoptosis in kidney cystogenesis is not clear. METHODS: In current study, due to the high similarities between human and pig, PKD1-deficient (PKD1+/-) pigs and PKD1-knockdown (PKD1KD) pig kidney epithelial cells were used to investigate the mechanisms of apoptosis in driving cystogenesis. RESULTS: In PKD1+/- pigs, increased intrinsic and extrinsic apoptosis were found at ages of 1 month and 3 months, whereas the autophagy and pyroptosis were not altered. Meanwhile, the intrinsic apoptosis was activated along with untouched extrinsic apoptosis in PKD1KD pig kidney cells. Thus, the intrinsic apoptosis played important roles in cystogenesis. CONCLUSIONS: This work provides detail analysis of the roles of different cell death types during cystogenesis in ADPKD pig model. The results suggested a potential new strategy for the diagnosis and treatment of ADPKD by targeting intrinsic apoptosis.


Subject(s)
Apoptosis , Polycystic Kidney, Autosomal Dominant/etiology , TRPP Cation Channels/deficiency , Animals , Cell Count , Cell Line , Disease Models, Animal , Gene Knockdown Techniques , Macrophages , Polycystic Kidney, Autosomal Dominant/genetics , Swine , Tumor Necrosis Factor-alpha/metabolism
17.
Nature ; 593(7859): 418-423, 2021 05.
Article in English | MEDLINE | ID: mdl-33727703

ABSTRACT

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Subject(s)
Antiviral Agents/pharmacology , Clofazimine/pharmacology , Coronavirus/classification , Coronavirus/drug effects , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/pharmacology , Alanine/therapeutic use , Animals , Anti-Inflammatory Agents/pharmacokinetics , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacokinetics , Antiviral Agents/therapeutic use , Biological Availability , Cell Fusion , Cell Line , Clofazimine/pharmacokinetics , Clofazimine/therapeutic use , Coronavirus/growth & development , Coronavirus/pathogenicity , Cricetinae , DNA Helicases/antagonists & inhibitors , Drug Synergism , Female , Humans , Life Cycle Stages/drug effects , Male , Mesocricetus , Pre-Exposure Prophylaxis , SARS-CoV-2/growth & development , Species Specificity , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Transcription, Genetic/drug effects , Transcription, Genetic/genetics
18.
Nat Commun ; 11(1): 5263, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33067430

ABSTRACT

Global emergence of Gram-negative bacteria carrying the plasmid-borne resistance genes, blaMBL and mcr, raises a significant challenge to the treatment of life-threatening infections by the antibiotics, carbapenem and colistin (COL). Here, we identify an antirheumatic drug, auranofin (AUR) as a dual inhibitor of metallo-ß-lactamases (MBLs) and mobilized colistin resistance (MCRs), two resistance enzymes that have distinct structures and substrates. We demonstrate that AUR irreversibly abrogates both enzyme activity via the displacement of Zn(II) cofactors from their active sites. We further show that AUR synergizes with antibiotics on killing a broad spectrum of carbapenem and/or COL resistant bacterial strains, and slows down the development of ß-lactam and COL resistance. Combination of AUR and COL rescues all mice infected by Escherichia coli co-expressing MCR-1 and New Delhi metallo-ß-lactamase 5 (NDM-5). Our findings provide potential therapeutic strategy to combine AUR with antibiotics for combating superbugs co-producing MBLs and MCRs.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Auranofin/administration & dosage , Carbapenems/pharmacology , Colistin/pharmacology , Escherichia coli Infections/drug therapy , beta-Lactamase Inhibitors/administration & dosage , Animals , Drug Resistance, Multiple, Bacterial , Escherichia coli/drug effects , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli Infections/microbiology , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Female , Humans , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , beta-Lactamases/genetics , beta-Lactamases/metabolism
19.
Nat Microbiol ; 5(11): 1439-1448, 2020 11.
Article in English | MEDLINE | ID: mdl-33028965

ABSTRACT

SARS-CoV-2 is causing a pandemic of COVID-19, with high infectivity and significant mortality1. Currently, therapeutic options for COVID-19 are limited. Historically, metal compounds have found use as antimicrobial agents, but their antiviral activities have rarely been explored. Here, we test a set of metallodrugs and related compounds, and identify ranitidine bismuth citrate, a commonly used drug for the treatment of Helicobacter pylori infection, as a potent anti-SARS-CoV-2 agent, both in vitro and in vivo. Ranitidine bismuth citrate exhibited low cytotoxicity and protected SARS-CoV-2-infected cells with a high selectivity index of 975. Importantly, ranitidine bismuth citrate suppressed SARS-CoV-2 replication, leading to decreased viral loads in both upper and lower respiratory tracts, and relieved virus-associated pneumonia in a golden Syrian hamster model. In vitro studies showed that ranitidine bismuth citrate and its related compounds exhibited inhibition towards both the ATPase (IC50 = 0.69 µM) and DNA-unwinding (IC50 = 0.70 µM) activities of the SARS-CoV-2 helicase via an irreversible displacement of zinc(II) ions from the enzyme by bismuth(III) ions. Our findings highlight viral helicase as a druggable target and the clinical potential of bismuth(III) drugs or other metallodrugs for the treatment of SARS-CoV-2 infection.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Bismuth/pharmacology , Coronavirus Infections/virology , Pneumonia, Viral/virology , Ranitidine/analogs & derivatives , Virus Replication/drug effects , Animals , Betacoronavirus/physiology , COVID-19 , Chemokines/metabolism , Chlorocebus aethiops , Coronavirus Infections/drug therapy , Cytokines/metabolism , Disease Models, Animal , HEK293 Cells , Humans , Lung/pathology , Lung/virology , Mesocricetus , Pandemics , Pneumonia, Viral/drug therapy , RNA Helicases/metabolism , Ranitidine/pharmacology , SARS-CoV-2 , Vero Cells , Viral Load , COVID-19 Drug Treatment
20.
iScience ; 23(5): 101054, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32353763

ABSTRACT

Cisplatin (CDDP) has been a highly successful anticancer drug in cancer therapy; however, its further application suffers severe nephrotoxicity. Herein, we identify bismuth tetraphenylporphyrinate [Bi(TPP)] as a potent protective agent against CDDP-induced nephrotoxicity. Bi(TPP) attenuates CDDP-induced acute kidney injury and prevents the death of mice exposed to a lethal dose of CDDP. The protective potency of bismuth porphyrin complexes could be optimized by varying lipophilic TPP ligands with ideal ClogP values of 8-14. Unexpectedly, Bi(TPP) exhibited a protective role via metallothionein-independent pathways, i.e., maintenance of redox homeostasis and energy supplement, elimination of accumulated platinum in the kidney, and inactivation of caspases cascade in apoptotic pathway. Significantly, Bi(TPP) does not compromise the antitumor activity of CDDP in the orthotopic tumor xenograft mouse model. These findings suggest that Bi(TPP) could be incorporated into current CDDP-based cancer therapy as a nephroprotective agent.

SELECTION OF CITATIONS
SEARCH DETAIL
...