Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Molecules ; 29(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38930847

ABSTRACT

Electrochemical nitrate reduction (NO3-RR) has been recognized as a promising strategy for sustainable ammonia (NH3) production due to its environmental friendliness and economical nature. However, the NO3-RR reaction involves an eight-electron coupled proton transfer process with many by-products and low Faraday efficiency. In this work, a molybdenum oxide (MoOx)-decorated titanium dioxide nanotube on Ti foil (Mo/TiO2) was prepared by means of an electrodeposition and calcination process. The structure of MoOx can be controlled by regulating the concentration of molybdate during the electrodeposition process, which can further influence the electron transfer from Ti to Mo atoms, and enhance the binding energy of intermediate species in NO3-RR. The optimized Mo/TiO2-M with more Mo(IV) sites exhibited a better activity for NO3-RR. The Mo/TiO2-M electrode delivered a NH3 yield of 5.18 mg h-1 cm-2 at -1.7 V vs. Ag/AgCl, and exhibited a Faraday efficiency of 88.05% at -1.4 V vs. Ag/AgCl. In addition, the cycling test demonstrated that the Mo/TiO2-M electrode possessed a good stability. This work not only provides an attractive electrode material, but also offers new insights into the rational design of catalysts for NO3-RR.

2.
Nanoscale ; 15(39): 16219-16226, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37781913

ABSTRACT

The electrocatalytic nitrogen reduction reaction (eNRR) has been widely recognized as a promising method for green ammonia synthesis. However, the inert NN bond, inferior catalytic activity and small electrochemically active area impede its practical application. To circumvent these problems, we proposed self-supported Ti-doped iron phosphide (FeP) nanorod arrays grown on carbon cloth (Ti-FeP/CC) as an electrode for eNRR. The introduction of Ti doping sites regulated the electron structure of FeP, leading to electron migration from Fe to P, which facilitated N2-to-NH3 conversion. The as-prepared Ti-FeP/CC showed an enhancement of electrochemical surface area (ECSA), high electrical conductivity and well-exposed active sites. Ti-FeP/CC was capable of producing a high NH3 yield of 10.93 µg h-1 cm-2 and faradaic efficiency of 10.77% at an optimal voltage of -0.3 V (vs. RHE) in a 0.1 M Na2SO4 solution with excellent stability and durability during the eNRR process. This work not only presents a promising electrode material for eNRR, but also provides a new insight into rational heteroatom doping for electrocatalysis.

3.
Chem Sci ; 13(46): 13907-13913, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36544745

ABSTRACT

Singlet fission (SF) has drawn tremendous attention as a multiexciton generation process that could mitigate the thermal loss and boost the efficiency of solar energy conversion. Although a SF-based solar cell with an EQE above 100% has already been fabricated successfully, the practical efficiency of the corresponding devices is plagued by the limited scope of SF materials. Therefore, it is of great importance to design and develop new SF-capable compounds aiming at practical device application. In the current contribution, via a π-expanded strategy, we presented a new series of robust SF chromophores based on polycyclic DPP derivatives, Ex-DPPs. Compared to conventional DPP molecules, Ex-DPPs feature strong absorption with a fivefold extinction coefficient, good molecular rigidity to effectively restrain non-radiative deactivation, and an expanded π-skeleton which endow them with well-suited intermolecular packing geometries for achieving efficient SF process. These results not only provide a new type of high-efficiency SF chromophore but also address some basic guidelines for the design of potential SF materials targeting practical light harvesting applications.

4.
J Phys Chem Lett ; 13(32): 7547-7552, 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35948107

ABSTRACT

Understanding the structure-property relationships in organic semiconductors is crucial for controlling their photophysical properties and developing new optoelectronic materials. Quadrupolar molecules, donor-acceptor-donor (DAD), have attracted extensive attention in various optoelectronic applications. However, the systematic studies on the differences on photophysical properties between DAD and simple donor-acceptor (DA) chromophores are rarely reported. Herein we present a comparative study on the excited state dynamics of DA and DAD fluorescence systems using theoretical calculation and transient absorption spectroscopy. Results show that DA and DAD molecules exhibit similar excited state dynamics, which are attributed to the distinctive excited-state symmetry breaking (ESSB) phenomenon observed in a DAD system. The strong photoluminescence (PL) and ultrafast charge separation (CS) from an ESSB-induced partial charge transfer (CT) state were clearly detected in different solvent environments. These results not only offer insight into the excited state dynamics of the DAD fluorescence system but also provide some basic guidelines for designing new optoelectronic materials.

5.
Sci Rep ; 12(1): 12876, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35896676

ABSTRACT

In order to improve the picking efficiency of warehouses, shorten the time cost and promote the development of the logistics industry, this study analyzes the routing strategies in fishbone layout warehouses under the class-based storage strategy. The fishbone layout was divided into three storage areas for class A, class B, and class C items according to the proportion using the straight line, to meet the classification requirements of items. Under the class-based storage strategy, to evaluate the performance of the return routing strategy and the S-shape routing strategy, the stochastic models of the expected walking distance of the two routing strategies in the fishbone layout warehouse are established by calculating the sum of the expected walking distances in diagonal cross-aisles and picking aisles. Finally, the stochastic models of the two routing strategies are simulated and verified, and the impacts of the two routing strategies on walking distances are analyzed by comparing the expected distances under different ordering frequencies and space allocation strategies. The numerical results show that the return routing strategy has an advantage over the S-shape routing strategy when determining the relevant parameters of the fishbone layout and picking orders. Meanwhile, it also provides a theoretical basis for research on stochastic models of routing strategies in fishbone layout warehouses under the class-based storage strategy.

6.
Glob Chang Biol ; 28(4): 1529-1543, 2022 02.
Article in English | MEDLINE | ID: mdl-34800306

ABSTRACT

The responses of forests to nitrogen (N) deposition largely depend on the fates of deposited N within the ecosystem. Nitrogen-fixing legume trees widely occur in terrestrial forests, but the fates of deposited N in legume-dominated forests remain unclear, which limit a global evaluation of N deposition impacts and feedbacks on carbon sequestration. Here, we performed the first ecosystem-scale 15 N labeling experiment in a typical legume-dominated forest as well as in a nearby non-legume forest to determine the fates of N deposition between two different forest types and to explore their underlying mechanisms. The 15 N was sprayed bimonthly for 1 year to the forest floor in control and N addition (50 kg N ha-1  year-1 for 10 years) plots in both forests. We unexpectedly found a strong capacity of the legume forest to retain deposited N, with 75 ± 5% labeled N recovered in plants and soils, which was higher than that in the non-legume forest (56 ± 4%). The higher 15 N recovery in legume forest was mainly driven by uptake by the legume trees, in which 15 N recovery was approximately 15% more than that in the nearby non-legume trees. This indicates higher N-demand by the legume than non-legume trees. Mineral soil was the major sink for deposited N, with 39 ± 4% and 34 ± 3% labeled N retained in the legume and non-legume forests, respectively. Moreover, N addition did not significantly change the 15 N recovery patterns of both forests. Overall, these findings indicate that legume-dominated forests act as a strong sink for deposited N regardless of high soil N availability under long-term atmospheric N deposition, which suggest a necessity to incorporate legume-dominated forests into N-cycling models of Earth systems to improve the understanding and prediction of terrestrial N budgets and the global N deposition effects.


Subject(s)
Fabaceae , Nitrogen , Ecosystem , Forests , Soil , Trees/physiology
7.
Data Brief ; 26: 103906, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31667210

ABSTRACT

The data presented in this article are referred to the research article "A potential source of soil ecoenzymes: From the phylllosphere to soil via throughfall" (Mori et al., 2019). The data included the activities of ß-1,4-glucosidase (BG, EC 3.2.1.21), ß-d-cellobiosidase (CBH, EC 3.2.1.91), ß-1,4-N-acetyl-glucosaminidase (NAG, EC 3.2.1.52), leucine amino peptidase (LAP, EC 3.4.11.1), polyphenol oxidase (PPO, EC 1.10.3.2), and phosphomonoesterase (PME, EC 3.1.3.2). The informatin of study sites and sampling method are shown in Fig. 1 and 2.

8.
J Phys Chem Lett ; 9(18): 5567-5573, 2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30198723

ABSTRACT

The electrochemical insertion of Li into graphite initiates a series of thermodynamic and kinetic processes. An in-depth understanding of this phenomenon will deepen the knowledge of electrode material design and optimize rechargeable Li batteries. In this context, the phase transition from dense stage II (LiC12) to stage I (LiC6) was comprehensively elucidated in a graphite anode via both experimental characterizations and first-principles calculations. The results indicate that, although the transition from stage II to stage I is thermodynamically allowed, the process is kinetically prohibited because Li ions tend to cluster into stage compounds rather than form a solid solution. Additionally, the phase transitions involve at least three intermediate structures (1T, 2H, and 3R) before reaching the LiC6 (stage I) phase. These findings provide new insights into the electrochemical behavior of graphite and the electrode process kinetics for rechargeable Li batteries.

9.
Ecology ; 99(9): 2037-2046, 2018 09.
Article in English | MEDLINE | ID: mdl-29893021

ABSTRACT

Lowland tropical forests with chronic nitrogen (N) deposition and/or abundant N-fixing organisms are commonly rich in N relative to other nutrients. The tropical N richness introduces a paradoxical relationship in which many tropical forests sustain high rates of asymbiotic N fixation despite the soil N richness and the higher energy cost of N fixation than of soil N uptake. However, the mechanism underlying this phenomenon remains unclear. Our study aims to test this phenomenon and examine potential mechanisms of nutrient concentrations vs. substrate stoichiometry in regulating N fixation using multiple linear regression models. We hypothesized that the rates of asymbiotic N fixation would be low in an N-rich forest under N deposition and substrate stoichiometry would explain the variation in N fixation better than nutrient concentrations. We conducted a chronic N-addition experiment in an N-saturated tropical forest in southern China and measured the N fixation rates, carbon (C), N, and phosphorus (P) concentrations, and stoichiometry in different substrates (soil, forest floor, mosses, and canopy leaves). Total N fixation rates were high (10.35-12.43 kg N·ha-1 ·yr-1 ) in this N-saturated forest because of the high substrate C:N and N:P stoichiometry (which explained 13-52% of the variation in N fixation, P < 0.037) rather than substrate nutrient concentrations (P > 0.05). Atmospheric N deposition (34-50 kg N·ha-1 ·yr-1 ) failed to down-regulate asymbiotic N fixation in this forest possibly because the N deposition rate was insufficient to inhibit N fixation or N deposition maintained high N fixation rates by increasing C sequestration in the substrates. Our N-addition experiment showed the insensitivity of N fixation in all the tested substrates to low N addition (50 kg N·ha-1 ·yr-1 ); however, medium and high N addition (100-150 kg N·ha-1 ·yr-1 ) stimulated the moss and foliar N fixation because of the increases in substrate C:N stoichiometry (which explained 30-34% of the variation in N fixation, P < 0.001). Overall, our results emphasize the importance of substrate (particularly mosses and foliage) stoichiometry as a driver of asymbiotic N fixation and sustained N richness in lowland tropical forests.


Subject(s)
Nitrogen Fixation , Nitrogen/chemistry , China , Forests , Soil/chemistry , Trees
10.
Oncol Rep ; 40(1): 165-178, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29767247

ABSTRACT

Limited cellular delivery and internalization efficiency of Al(III) phthalocyanine chloride tetrasulfonic acid (AlPcS4) induce poor penetration ability in cells and a slight photodynamic therapy (PDT) effect on gastric cancer. The combination treatment of AlPcS4/PDT with low­dose chemotherapeutic agents may provide a promising treatment strategy to increase the weak delivery efficiency of AlPcS4, reducing the dose of chemical agents without reducing efficacy, and improving apoptosis­inducing abilities, thereby increasing the antitumor effects and decreasing the noxious side effects on gastric cancer. We investigated and compared the synergistic antitumor growth effect on gastric cancer cells by combining AlPcS4/PDT treatment with different low­dose chemotherapeutic agents, namely, 5­fluorouracil (5­FU), doxorubicin (DOX), cisplatin (CDDP), mitomycin C (MMC), and vincristine (VCR). The inhibitory effect was increased in treatments that combined AlPcS4/PDT with all the aforementioned low­dose chemotherapeutic agents, to a different extent. An evident synergistic effect was obtained in the combination treatment of AlPcS4/PDT with low­dose 5­FU, DOX, and MMC by increasing AlPcS4 intracellular uptake ability, improving apoptosis­inducing abilities, and prolonging apoptosis­inducing time. The low­dose chemotherapeutic agents prolonged the apoptosis­inducing period of AlPcS4/PDT, and AlPcS4/PDT quickly improved apoptosis­inducing abilities of chemotherapy even at low doses. Generally, the combination treatment of AlPcS4/PDT with low­dose chemotherapeutic agents had significant antitumor growth effects in addition to a low dark­cytotoxicity effect on gastric cancer, thereby representing an effective and feasible therapy method for gastric cancer.


Subject(s)
Apoptosis/drug effects , Indoles/pharmacology , Organometallic Compounds/pharmacology , Photosensitizing Agents/pharmacology , Stomach Neoplasms/drug therapy , Cell Line, Tumor , Cisplatin/pharmacology , Combined Modality Therapy , Dose-Response Relationship, Drug , Doxorubicin/pharmacology , Drug Synergism , Fluorouracil/pharmacology , Humans , Mitomycin/pharmacology , Photochemotherapy , Stomach Neoplasms/pathology , Vincristine/pharmacology
11.
Sci Total Environ ; 601-602: 1505-1512, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28605868

ABSTRACT

Asymbiotic nitrogen (N) fixation is an important source of new N in ecosystems, and is sensitive to atmospheric N deposition. However, there is limited understanding of asymbiotic N fixation and its response to N deposition in the context of forest rehabilitation. In this study, we measured N fixation rates (acetylene reduction) in different ecosystem compartments (i.e. soil, forest floor, moss Syrrhopodon armatus, and canopy leaves) in a disturbed and a rehabilitated subtropical forest in southern China, under 12years of N treatments: control, low N addition (50kgNha-1yr-1), and medium N addition (100kgNha-1yr-1). The rehabilitated forest had higher nutrient (e.g. N) availability than the disturbed forest. In control plots, N fixation rates in forest floor were higher in the rehabilitated forest than in the disturbed forest, but N fixation rates in other compartments (soil, S. armatus, and canopy leaves) were comparable between the forests. Nitrogen addition significantly suppressed N fixation in soil, forest floor, S. armatus, and canopy leaves in the disturbed forest, but had no significant effect on those compartments in the rehabilitated forest. The main reasons for the negative effects of N addition on N fixation in the disturbed forest were NH4+ inhibition (soil), the P and C limitation (forest floor), and the reduced N dependence on canopy N-fixers (S. armatus and canopy leaves). We conclude that asymbiotic N fixation does not decline with increasing N availability after rehabilitation in the study forests. The inhibitory effects of N addition on asymbiotic N fixation occurred in the disturbed forest but not in the rehabilitated forest, indicating that forest rehabilitation may change the response of ecosystem function (i.e. N fixation) to N deposition, which merits further study in other tropical and subtropical regions.


Subject(s)
Environmental Restoration and Remediation , Forests , Nitrogen Fixation , Nitrogen/analysis , Bryophyta , China , Soil , Trees
12.
Biotechnol Bioeng ; 110(3): 980-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23097012

ABSTRACT

Cell-laden microfluidic hydrogels find great potential applications in microfluidics, tissue engineering, and drug delivery, due to their ability to control mass transport and cell microenvironment. A variety of methods have been developed to fabricate hydrogels with microfluidic channels, such as molding, bioprinting, and photopatterning. However, the relatively simple structure available and the specific equipment required limit their broad applications in tissue engineering. Here, we developed a simple method to fabricate microfluidic hydrogels with helical microchannels based on a helical spring template. Results from both experimental investigation and numerical modeling revealed a significant enhancement on the perfusion ability and cell viability of helical microfluidic hydrogels compared to those with straight microchannels. The feasibility of such a helical spring template method was also demonstrated for microfluidic hydrogels with complex three-dimensional channel networks such as branched helical microchannels. The method presented here could potentially facilitate the development of vascular tissue engineering and cell microenvironment engineering.


Subject(s)
Hydrogels , Microfluidic Analytical Techniques , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...