Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 3129, 2021 May 25.
Article in English | MEDLINE | ID: mdl-34035305

ABSTRACT

Kagome-lattices of 3d-transition metals hosting Weyl/Dirac fermions and topological flat bands exhibit non-trivial topological characters and novel quantum phases, such as the anomalous Hall effect and fractional quantum Hall effect. With consideration of spin-orbit coupling and electron correlation, several instabilities could be induced. The typical characters of the electronic structure of a kagome lattice, i.e., the saddle point, Dirac-cone, and flat band, around the Fermi energy (EF) remain elusive in magnetic kagome materials. We present the experimental observation of the complete features in ferromagnetic kagome layers of YMn6Sn6 helically coupled along the c-axis, by using angle-resolved photoemission spectroscopy and band structure calculations. We demonstrate a Dirac dispersion near EF, which is predicted by spin-polarized theoretical calculations, carries an intrinsic Berry curvature and contributes to the anomalous Hall effect in transport measurements. In addition, a flat band and a saddle point with a high density of states near EF are observed. These multi-sets of kagome features are of orbital-selective origin and could cause multi-orbital magnetism. The Dirac fermion, flat band and saddle point in the vicinity of EF open an opportunity in manipulating the topological properties in magnetic materials.

2.
Nat Commun ; 11(1): 4002, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32778641

ABSTRACT

Layered kagome-lattice 3d transition metals are emerging as an exciting platform to explore the frustrated lattice geometry and quantum topology. However, the typical kagome electronic bands, characterized by sets of the Dirac-like band capped by a phase-destructive flat band, have not been clearly observed, and their orbital physics are even less well investigated. Here, we present close-to-textbook kagome bands with orbital differentiation physics in CoSn, which can be well described by a minimal tight-binding model with single-orbital hopping in Co kagome lattice. The capping flat bands with bandwidth less than 0.2 eV run through the whole Brillouin zone, especially the bandwidth of the flat band of out-of-plane orbitals is less than 0.02 eV along Γ-M. The energy gap induced by spin-orbit interaction at the Dirac cone of out-of-plane orbitals is much smaller than that of in-plane orbitals, suggesting orbital-selective character of the Dirac fermions.

3.
Nat Commun ; 10(1): 4469, 2019 10 02.
Article in English | MEDLINE | ID: mdl-31578337

ABSTRACT

Magnetic topological insulators (MTIs) offer a combination of topologically nontrivial characteristics and magnetic order and show promise in terms of potentially interesting physical phenomena such as the quantum anomalous Hall (QAH) effect and topological axion insulating states. However, the understanding of their properties and potential applications have been limited due to a lack of suitable candidates for MTIs. Here, we grow two-dimensional single crystals of Mn(SbxBi(1-x))2Te4 bulk and exfoliate them into thin flakes in order to search for intrinsic MTIs. We perform angle-resolved photoemission spectroscopy, low-temperature transport measurements, and first-principles calculations to investigate the band structure, transport properties, and magnetism of this family of materials, as well as the evolution of their topological properties. We find that there exists an optimized MTI zone in the Mn(SbxBi(1-x))2Te4 phase diagram, which could possibly host a high-temperature QAH phase, offering a promising avenue for new device applications.

4.
Nat Commun ; 9(1): 4212, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30297710

ABSTRACT

The original version of this Article incorrectly omitted an affiliation of Hongming Weng: "Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China"This has been corrected in both the PDF and HTML versions of the Article.

5.
Nat Commun ; 9(1): 3681, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30206233

ABSTRACT

The origin of anomalous Hall effect (AHE) in magnetic materials is one of the most intriguing aspects in condensed matter physics and has been a controversial topic for a long time. Recent studies indicate that the intrinsic AHE is closely related to the Berry curvature of occupied electronic states. In a magnetic Weyl semimetal with broken time-reversal symmetry, there are significant contributions to Berry curvature around Weyl nodes, possibly leading to a large intrinsic AHE. Here, we report the quite large AHE in the half-metallic ferromagnet Co3Sn2S2 single crystal. By systematically mapping out the electronic structure of Co3Sn2S2 both theoretically and experimentally, we demonstrate that the intrinsic AHE from the Weyl fermions near the Fermi energy is dominating. The intrinsic anomalous Hall conductivity depends linearly on the magnetization and can be reproduced by theoretical simulation, in which the Weyl nodes monotonically move with the constrained magnetic moment on Co atom.

6.
Sci Bull (Beijing) ; 62(7): 503-507, 2017 Apr 15.
Article in English | MEDLINE | ID: mdl-36659260

ABSTRACT

We performed angle-resolved photoemission spectroscopy studies on a series of FeTe1-xSex monolayer films grown on SrTiO3. The superconductivity of the films is robust and rather insensitive to the variations of the band position and effective mass caused by the substitution of Se by Te. However, the band gap between the electron- and hole-like bands at the Brillouin zone center decreases towards band inversion and parity exchange, which drive the system to a nontrivial topological state predicted by theoretical calculations. Our results provide a clear experimental indication that the FeTe1-xSex monolayer materials are high-temperature connate topological superconductors in which band topology and superconductivity are integrated intrinsically.

7.
ACS Nano ; 4(8): 4879-89, 2010 Aug 24.
Article in English | MEDLINE | ID: mdl-20681631

ABSTRACT

Low-energy electron microscopy and microprobe diffraction are used to image and characterize corrugation in SiO(2)-supported and suspended exfoliated graphene at nanometer length scales. Diffraction line-shape analysis reveals quantitative differences in surface roughness on length scales below 20 nm which depend on film thickness and interaction with the substrate. Corrugation decreases with increasing film thickness, reflecting the increased stiffness of multilayer films. Specifically, single-layer graphene shows a markedly larger short-range roughness than multilayer graphene. Due to the absence of interactions with the substrate, suspended graphene displays a smoother morphology and texture than supported graphene. A specific feature of suspended single-layer films is the dependence of corrugation on both adsorbate load and temperature, which is manifested by variations in the diffraction line shape. The effects of both intrinsic and extrinsic corrugation factors are discussed.

8.
Phys Rev Lett ; 97(23): 237601, 2006 Dec 08.
Article in English | MEDLINE | ID: mdl-17280245

ABSTRACT

Electron accumulation states in InN have been measured using high resolution angle-resolved photoemission spectroscopy (ARPES). The electrons in the accumulation layer have been discovered to reside in quantum well states. ARPES was also used to measure the Fermi surface of these quantum well states, as well as their constant binding energy contours below the Fermi level E(F). The energy of the Fermi level and the size of the Fermi surface for these quantum well states could be controlled by varying the method of surface preparation. This is the first unambiguous observation that electrons in the InN accumulation layer are quantized and the first time the Fermi surface associated with such states has been measured.

SELECTION OF CITATIONS
SEARCH DETAIL