Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Bone Jt Open ; 5(4): 350-360, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649150

ABSTRACT

Aims: Radiotherapy is a well-known local treatment for spinal metastases. However, in the presence of postoperative systemic therapy, the efficacy of radiotherapy on local control (LC) and overall survival (OS) in patients with spinal metastases remains unknown. This study aimed to evaluate the clinical outcomes of post-surgical radiotherapy for spinal metastatic non-small-cell lung cancer (NSCLC) patients, and to identify factors correlated with LC and OS. Methods: A retrospective, single-centre review was conducted of patients with spinal metastases from NSCLC who underwent surgery followed by systemic therapy at our institution from January 2018 to September 2022. Kaplan-Meier analysis and log-rank tests were used to compare the LC and OS between groups. Associated factors for LC and OS were assessed using Cox proportional hazards regression analysis. Results: Overall, 123 patients with 127 spinal metastases from NSCLC who underwent decompression surgery followed by postoperative systemic therapy were included. A total of 43 lesions were treated with stereotactic body radiotherapy (SBRT) after surgery and 84 lesions were not. Survival rate at one, two, and three years was 83.4%, 58.9%, and 48.2%, respectively, and LC rate was 87.8%, 78.8%, and 78.8%, respectively. Histological type was the only significant associated factor for both LC (p = 0.007) and OS (p < 0.001). Treatment with targeted therapy was significantly associated with longer survival (p = 0.039). The risk factors associated with worse survival were abnormal laboratory data (p = 0.021), lesions located in the thoracic spine (p = 0.047), and lumbar spine (p = 0.044). This study also revealed that postoperative radiotherapy had little effect in improving OS or LC. Conclusion: Tumour histological type was significantly associated with the prognosis in spinal NSCLC metastasis patients. In the presence of post-surgical systemic therapy, radiotherapy appeared to be less effective in improving LC, OS, or quality of life in spinal NSCLC metastasis patients.

2.
Small ; : e2309038, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456768

ABSTRACT

Adoptive cellular therapy is a promising strategy for cancer treatment. However, the effectiveness of this therapy is limited by its intricate and immunosuppressive tumor microenvironment. In this study, a targeted therapeutic strategy for macrophage loading of drugs is presented to enhance anti-tumor efficacy of macrophages. K7M2-target peptide (KTP) is used to modify macrophages to enhance their affinity for tumors. Pexidartinib-loaded ZIF-8 nanoparticles (P@ZIF-8) are loaded into macrophages to synergistically alleviate the immunosuppressive tumor microenvironment synergistically. Thus, the M1 macrophages decorated with KTP carried P@ZIF-8 and are named P@ZIF/M1-KTP. The tumor volumes in the P@ZIF/M1-KTP group are significantly smaller than those in the other groups, indicating that P@ZIF/M1-KTP exhibited enhanced anti-tumor efficacy. Mechanistically, an increased ratio of CD4+ T cells and a decreased ratio of MDSCs in the tumor tissues after treatment with P@ZIF/M1-KTP indicated that it can alleviate the immunosuppressive tumor microenvironment. RNA-seq further confirms the enhanced immune cell function. Consequently, P@ZIF/M1-KTP has great potential as a novel adoptive cellular therapeutic strategy for tumors.

3.
Sci Adv ; 10(3): eadi4298, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38232158

ABSTRACT

Bone is one of the most common sites of tumor metastases. During the last step of bone metastasis, cancer cells colonize and disrupt the bone matrix, which is maintained mainly by osteocytes, the most abundant cells in the bone microenvironment. However, the role of osteocytes in bone metastasis is still unclear. Here, we demonstrated that osteocytes transfer mitochondria to metastatic cancer cells and trigger the cGAS/STING-mediated antitumor response. Blocking the transfer of mitochondria by specifically knocking out mitochondrial Rho GTPase 1 (Rhot1) or mitochondrial mitofusin 2 (Mfn2) in osteocytes impaired tumor immunogenicity and consequently resulted in the progression of metastatic cancer toward the bone matrix. These findings reveal the protective role of osteocytes against cancer metastasis by transferring mitochondria to cancer cells and potentially offer a valuable therapeutic strategy for preventing bone metastasis.


Subject(s)
Bone Neoplasms , Osteocytes , Humans , Osteocytes/metabolism , Bone and Bones , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Bone Neoplasms/secondary , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Mitochondria , Tumor Microenvironment
4.
Adv Sci (Weinh) ; 11(6): e2307049, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38044314

ABSTRACT

An ideal DNA-encoded library (DEL) selection requires the library to consist of diverse core skeletons and cover chemical space as much as possible. However, the lack of efficient on-DNA synthetic approaches toward core skeletons has greatly restricted the diversity of DEL. To mitigate this issue, this work disclosed a "Mask & Release" strategy to streamline the challenging on-DNA core skeleton synthesis. N-phenoxyacetamide is used as a masked phenol and versatile directing group to mediate diversified DNA-compatible C-H functionalization, introducing the 1st-dimensional diversity at a defined site, and simultaneously releasing the phenol functionality, which can facilitate the introduction of the 2nd diversity. This work not only provides a set of efficient syntheses toward DNA-conjugated drug-like core skeletons such as ortho-alkenyl/sulfiliminyl/cyclopropyl phenol, benzofuran, dihydrobenzofuran but also provides a paradigm for on-DNA core skeleton synthetic method development.


Subject(s)
DNA , Phenol , Phenols
6.
ACS Appl Mater Interfaces ; 15(50): 58593-58604, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38051013

ABSTRACT

Chemodynamic therapy (CDT) has emerged as a promising approach to cancer treatment, which can break the intracellular redox state balance and result in severe oxidative damage to biomolecules and organelles with the advantages of being less dependent on external stimulation, having deep tissue-healing abilities, and being resistant to drug resistance. There is considerable interest in developing CDT drugs with high efficiency and low toxicity. In this study, a new guanidinium-based biological metal covalent organic framework (Bio-MCOF), GZHMU-1@Mo, is rationally designed and synthesized as a multifunctional nanocatalyst in tumor cells for enhanced CDT. The DFT calculation and experimental results showed that due to the ability of MoO42- ion to promote electron transfer and increase the redox active site, Cu3 clusters and MoO42- ions in GZHMU-1@Mo can synergistically catalyze the production of reactive oxygen species (ROS) from oxygen and H2O2 in tumor cells, as well as degrade intracellular reducing substances, GSH and NADH, so as to disrupt the redox balance in tumor cells. Moreover, GZHMU-1@Mo exhibits a potent killing effect on tumor cells under both normal oxygen and anaerobic conditions. Further in vitro and in vivo antiproliferation studies revealed that the GZHMU-1@Mo nanoagent displays a remarkable antiproliferation effect and effectively inhibits tumor growth. Taken together, our study provides an insightful reference benchmark for the rational design of Bio-MCOF-based nanoagents with efficient CDT.


Subject(s)
Metal-Organic Frameworks , Nanoparticles , Neoplasms , Humans , Guanidine/pharmacology , Hydrogen Peroxide , Catalysis , Metals , Oxygen , Cell Line, Tumor , Neoplasms/drug therapy , Tumor Microenvironment , Glutathione
7.
J Bone Oncol ; 43: 100515, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38125609

ABSTRACT

Purpose: We retrospectively study twenty-nine surgical cases of aggressive vertebral hemangiomas (AVHs) with neurological deficits and extradural compression to determine the optimal surgical treatment strategy for AVHs at a single institution. Methods: Patients with AVHs with neurological deficits who underwent partial tumor resection plus decompression with or without vertebroplasty (VP), and radiotherapy between 2010 and 2021 were included in this study. Clinical characteristics, surgical outcomes, and follow-up data of the patients were reviewed retrospectively. Results: Twenty-nine AVH cases with neurological deficits and spinal instability were included in this study and treated surgically. The mean operation time of patients with decompression surgery plus VP (Groupe A) was 215.9 (120-265 min), shorter than that of decompression surgery without VP (Group B) 240.2 (120-320 min). Intraoperative blood loss was 273.3 (100-550 mL) in group A and 635.3 (200-1600 mL) in group B. In addition, a significant reduction in blood loss was observed in group A compared to the group B (p=0.0001). All patients experienced immediate pain relief and improvement in their neurological symptoms. Neurological function was assessed by the Frankel score, ASIA score, and the visual analogue scale (VAS) pain score decreased from 7.4 (4-9) to 1.3 (0-3). Of twenty-nine patients in this study,  only 7% (2/29 patients) showed signs of recurrence. Conclusion: Decompression plus VP achieve good tumor control and decrease surgical complication. Preoperative vascular embolization and VP can reduce intraoperative bleeding in the treatment of AVH surgery. Moreover, postoperative radiotherapy seems to be a good technique to prevent tumor recurrence.

8.
Sleep Breath ; 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38123719

ABSTRACT

BACKGROUND : Insomnia disorder is associated with an impairment in cognitive performance. Doxepin and zolpidem have been found to be effective in improving sleep. In this study, we aimed to compare the effects of doxepin and zolpidem on sleep structure and executive function in patients with insomnia disorder. METHODS: Patients with primary insomnia were randomly assigned to receive doxepin 6 mg/day orally or zolpidem 5-10 mg/day orally. Polysomnography (PSG) and the Pittsburgh Sleep Quality Index (PSQI) were used at baseline and after the 8-week treatment to compare clinical efficacy in the two groups. Safety was assessed using the Treatment Emergent Symptom Scale (TESS). Executive function was evaluated using the Wisconsin sorting card test (WSCT). RESULTS: Of 120 patients enrolled in the study, 60 participants were assigned to each group. A total of 109 participants (53 in the doxepin group and 56 in the zolpidem group) completed the study. After treatment, the wake after sleep onset (WASO) and total sleep time (TST) values in the doxepin group were 80.3 ± 21.4 min and 378.9 ± 21.9 min, respectively, which were significantly better than those in the zolpidem group (132.9 ± 26.5 min and 333.2 ± 24.2 min, respectively; (P < 0.05)). The sleep onset latency (SOL) value in the zolpidem group (20.3 ± 4.7 min) was significantly better than that in the doxepin group (28.2 ± 5.6 min; P < 0.05). The sleep efficiency (SE) in the doxepin group was 77.8 ± 4.2%, which was significantly better than that in the zolpidem group (68.6 ± 5.0%; P < 0.05). The PSQI score of the doxepin group was 6.1 ± 1.1, which was significantly lower than that in the zolpidem group (7.9 ± 1.9; P < 0.05). The treatment adverse events in the doxepin group was 23.3%, which was significantly higher than that in the zolpidem group (13.3%; P < 0.05). The WSCT showed a significant improvement in persistent errors (PE), random errors (RE), and categories in the two groups after 8-week treatment, and the improvement in RE and the categories was more obvious in the doxepin group (P < 0.05). CONCLUSIONS: Both doxepin and zolpidem were found to be effective in improving sleep quality, but the effects exhibited different patterns. Doxepin improved executive function more effectively than zolpidem in patients with insomnia disorder.

9.
Org Lett ; 25(45): 8095-8099, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37938814

ABSTRACT

A mild and general protocol involving amnio- and oxyselenation of diverse alkenes for the efficient synthesis of organo-Se compounds is achieved via an environmentally benign calcium-catalyzed three-component reaction. This selenofunctionalization reaction exhibits excellent substrate/functional group tolerance and high levels of chemo- and regioselectivity. Its utility was exemplified in the late-stage functionalization and even aggregation-induced emission luminogen labeling of organo-Se compounds.

10.
Nat Commun ; 14(1): 6891, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37898686

ABSTRACT

Developing efficient artificial photocatalysts for the biomimetic photocatalytic production of molecular materials, including medicines and clean energy carriers, remains a fundamentally and technologically essential challenge. Hydrogen peroxide is widely used in chemical synthesis, medical disinfection, and clean energy. However, the current industrial production, predominantly by anthraquinone oxidation, suffers from hefty energy penalties and toxic byproducts. Herein, we report the efficient photocatalytic production of hydrogen peroxide by protonation-induced dispersible porous polymers with good charge-carrier transport properties. Significant photocatalytic hydrogen peroxide generation occurs under ambient conditions at an unprecedented rate of 23.7 mmol g-1 h-1 and an apparent quantum efficiency of 11.3% at 450 nm. Combined simulations and spectroscopies indicate that sub-picosecond ultrafast electron "localization" from both free carriers and exciton states at the catalytic reaction centers underlie the remarkable photocatalytic performance of the dispersible porous polymers.

11.
Cell Rep ; 42(9): 113147, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37756158

ABSTRACT

Metastasis is the major cause of cancer deaths, and cancer cells evolve to adapt to various tumor microenvironments, which hinders the treatment of tumor metastasis. Platelets play critical roles in tumor development, especially during metastasis. Here, we elucidate the role of platelet mitochondria in tumor metastasis. Cancer cells are reprogrammed to a metastatic state through the acquisition of platelet mitochondria via the PINK1/Parkin-Mfn2 pathway. Furthermore, platelet mitochondria regulate the GSH/GSSG ratio and reactive oxygen species (ROS) in cancer cells to promote lung metastasis of osteosarcoma. Impairing platelet mitochondrial function has proven to be an efficient approach to impair metastasis, providing a direction for osteosarcoma therapy. Our findings demonstrate mitochondrial transfer between platelets and cancer cells and suggest a role for platelet mitochondria in tumor metastasis.


Subject(s)
Bone Neoplasms , Osteosarcoma , Humans , Reactive Oxygen Species/metabolism , Blood Platelets/metabolism , Osteosarcoma/metabolism , Bone Neoplasms/metabolism , Mitochondria/metabolism , Tumor Microenvironment
12.
Org Lett ; 25(14): 2504-2508, 2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37000424

ABSTRACT

Direct access to the polyfluorinated lactams through Ca(NTf2)2 catalyzed by either the reductive amination of biomass-derived keto acids with amines or the reductive amination of amino acids with carbonyl derivatives under solvent-free conditions is realized. The two versatile protocols display chemospecificity and good substrate tolerance to deliver five- to eight-membered lactams with diverse functionality and substitution patterns. The robustness of the methodology is further demonstrated by subsequent application in the late-stage functionalization of drug molecules.

13.
Cancer Immunol Immunother ; 72(6): 1803-1821, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36680568

ABSTRACT

Human Vγ9Vδ2 T cells have attracted considerable attention as novel alternative antigen-presenting cells (APCs) with the potential to replace dendritic cells in antitumor immunotherapy owing to their high proliferative capacity and low cost. However, the utility of γδ T cells as APCs to induce CD8+ T cell-mediated antitumor immune response, as well as the mechanism by which they perform APC functions, remains unexplored. In this study, we found that activated Vγ9Vδ2 T cells were capable of inducing robust CD8+ T cell responses in osteosarcoma cells. Activated γδ T cells also effectively suppressed osteosarcoma growth by priming CD8+ T cells in xenograft animal models. Mechanistically, we further revealed that activated γδ T cells exhibited increased HSP90 production, which fed back to upregulate MyD88, followed by JNK activation and a subsequent improvement in CCL5 secretion, leading to enhanced CD8+ T cell cross-priming. Thus, our study suggests that Vγ9Vδ2 T cells represent a promising alternative APC for the development of γδ T cell-based tumor immunotherapy.


Subject(s)
Bone Neoplasms , Osteosarcoma , Animals , Humans , Antigen Presentation , Antigen-Presenting Cells , Antigens , CD8-Positive T-Lymphocytes , Lymphocyte Activation , Myeloid Differentiation Factor 88 , Receptors, Antigen, T-Cell, gamma-delta/metabolism , MAP Kinase Kinase 4/metabolism
14.
Bioact Mater ; 23: 508-523, 2023 May.
Article in English | MEDLINE | ID: mdl-36514387

ABSTRACT

Insufficient infiltration of T cells severely compromises the antitumor efficacy of adoptive cell therapy (ACT) against solid tumors. Here, we present a facile immune cell surface engineering strategy aiming to substantially enhance the anti-tumor efficacy of Th9-mediated ACT by rapidly identifying tumor-specific binding ligands and improving the infiltration of infused cells into solid tumors. Non-genetic decoration of Th9 cells with tumor-targeting peptide screened from phage display not only allowed precise targeted ACT against highly heterogeneous solid tumors but also substantially enhanced infiltration of CD8+ T cells, which led to improved antitumor outcomes. Mechanistically, infusion of Th9 cells modified with tumor-specific binding ligands facilitated the enhanced distribution of tumor-killing cells and remodeled the immunosuppressive microenvironment of solid tumors via IL-9 mediated immunomodulation. Overall, we presented a simple, cost-effective, and cell-friendly strategy to enhance the efficacy of ACT against solid tumors with the potential to complement the current ACT.

15.
Macromol Rapid Commun ; 44(11): e2200678, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36069655

ABSTRACT

The development and understanding of proton conductors based on phosphoric acid are critical for the field of chemistry, biology, and energy. Covalent organic frameworks (COFs), featuring highly crystalline structures and controllable pore sizes, are suitable for constructing phosphoric acid-based proton conductors. However, because of tedious and intricate synthesis, how to develop COFs based on phosphoric acid remains a substantial challenge. Herein, a side-chain decorated strategy is contributed to construct a phosphoric acid-functionalized, imine-linked COF by de novo synthesis. The phosphoric acid side chains with vigorous motion integrating with 1D nanochannels endow the resulting COF with intrinsic proton conductivity. This work expectantly provides a competitive alternative for producing phosphoric acid-functionalized COFs with high intrinsic proton conductivity.


Subject(s)
Metal-Organic Frameworks , Protons , Phosphoric Acids , Electric Conductivity
16.
Front Oncol ; 12: 1031779, 2022.
Article in English | MEDLINE | ID: mdl-36457488

ABSTRACT

The incidence of osteosarcoma (OS) is increasing year by year, and the prognosis of patients with advanced OS is extremely poor due to the tendency of recurrence and chemotherapy resistance after surgery. Ferroptosis is a novel form of programmed cell death (PCD) that kills cells through iron-dependent lipid peroxidation. Current studies have shown that ferroptosis is closely related to OS and could reduce chemotherapy resistance to a certain extent, which has great therapeutic potential. In this paper, we review the regulatory mechanism of ferroptosis and its research progress in OS, hoping to provide new help for the clinical treatment of OS.

17.
Org Biomol Chem ; 21(1): 80-84, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36449338

ABSTRACT

Triflic acids/silanes as cooperative reductants enable the convenient transformation of CO bonds through a multistep reaction pathway in one pot. Electrolysis of the acidic reaction mixture significantly improved carbonyl reduction and thus facilitated the generation of benzyl carbocations, which show high reactivity towards electron-rich heteroarenes for C-C bond formation.

18.
J Med Microbiol ; 71(11)2022 Nov.
Article in English | MEDLINE | ID: mdl-36346829

ABSTRACT

Introduction Bushen Zhuangjin Decoction (BZD), a well-known formulation in Traditional Chinese Medicine, has been widely used for the treatment of osteoarthritis (OA). Due to the poor intrinsic repair capacity of chondrocytes, promoting the proliferation of chondrocytes is an efficient treatment to delay the progression of cartilage degradation.Hypothesis/Gap Statement Therefore, to explore the regulatory mechanism of Bushen Zhuangjin Decoction in chondrocytes will contribute to the repair of chondrocyte injury in OA, and may serve as a potential therapy for OA diseases.Aim To investigate the expression and distribution of SOX9 mediated by serum containing Bushen Zhuangjin Decoction (BZD) and its therapeutic effect on chondrocyte injury in rats.Methodology. The subcultured second-generation rat chondrocytes were randomly divided into four groups, and they were intervened with medium containing different serums, including: blank serum group, low-concentration BZD group, medium-concentration BZD group, and high-concentration BZD group. The viability, proliferation and apoptosis of chondrocytes were detected by MTT assay and flow cytometry. The gene and protein levels of SOX9, aggrecan and type II collagen genes were analysed by qRT-PCR and Western blot analysis. Immunofluorescence staining was used to analyse the expression and distribution of SOX9. Inflammatory factors in different culture mediums of chondrocytes were detected by ELISA.Results Compared with the control group, the activity of chondrocytes in the BZD drug-containing serum group was significantly enhanced, and the degree of apoptosis was significantly decreased. The gene and protein levels of SOX9, proteoglycan aggrecan and collagen II in chondrocytes increased significantly. The inflammatory factors in the culture medium also decreased significantly. And in the above experiments, the medium concentration group BZD drug-containing serum had the best effect.Conclusion Our research results show that BZD medicated serum can up-regulate the expression of SOX9, reduce the release of inflammatory factors, and promote changes in the phenotype of chondrocytes, which protects chondrocytes from damage.


Subject(s)
Chondrocytes , SOX9 Transcription Factor , Rats , Animals , Chondrocytes/metabolism , Aggrecans/genetics , Aggrecans/metabolism , Aggrecans/pharmacology , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/pharmacology , Phenotype
19.
Nat Commun ; 13(1): 6308, 2022 10 23.
Article in English | MEDLINE | ID: mdl-36274066

ABSTRACT

Chemotherapy elicits tumor immune evasion with poorly characterized mechanisms. Here, we demonstrate that chemotherapy markedly enhances the expression levels of CD47 in osteosarcoma tissues, which are positively associated with patient mortality. We reveal that macrophages in response to chemotherapy secrete interleukin-18, which in turn upregulates expression of L-amino acid transporter 2 (LAT2) in tumor cells for substantially enhanced uptakes of leucine and glutamine, two potent stimulators of mTORC1. The increased levels of leucine and enhanced glutaminolysis activate mTORC1 and subsequent c-Myc-mediated transcription of CD47. Depletion of LAT2 or treatment of tumor cells with a LAT inhibitor downregulates CD47 with enhanced macrophage infiltration and phagocytosis of tumor cells, and sensitizes osteosarcoma to doxorubicin treatment in mice. These findings unveil a mutual regulation between macrophage and tumor cells that plays a critical role in tumor immune evasion and underscore the potential to intervene with the LAT2-mediated amino acid uptake for improving cancer therapies.


Subject(s)
Amino Acid Transport System y+ , Bone Neoplasms , CD47 Antigen , Osteosarcoma , Animals , Mice , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , CD47 Antigen/genetics , CD47 Antigen/metabolism , Cell Line, Tumor , Doxorubicin/pharmacology , Glutamine/metabolism , Interleukin-18 , Leucine/metabolism , Mechanistic Target of Rapamycin Complex 1 , Osteosarcoma/genetics , Osteosarcoma/metabolism , Phagocytosis/genetics , Tumor Escape/genetics , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism
20.
J Am Chem Soc ; 144(40): 18218-18222, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36069433

ABSTRACT

We report a multi-component synthetic strategy on a two-dimensional crystalline covalent organic framework (COF) by connecting acetonitrile with aromatic aldehyde and acetaldehyde moieties to form an unprecedented cyano-substituted buta-1,3-diene linkage. Different from most of the COFs that were crystallized from the condensations from two components, the presented COF is generated from two competitive and reversible reactions among three moieties. The buta-1,3-diene COF exhibits remarkable photoactivity with a low exciton binding energy of 44.4 ± 1.5 meV for promoted charge separation, which enables the buta-1,3-diene-linked COF as an efficient photocatalyst for various aerobic oxidation reactions under visible light. Our multi-component synthesis strategy may provide new sights for synthesizing COFs with structural diversity and functional variability that are hard to achieve by traditional COF synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...