Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanoscale ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745454

ABSTRACT

Microwave ablation (MWA) is recognized as a novel treatment modality that can kill tumor cells by heating the ions and polar molecules in these cells through high-speed rotation and friction. However, the size and location of the tumor affect the effective ablation range of microwave hyperthermia, resulting in residual tumor tissue and a high recurrence rate. Due to their tunable porous structure and high specific surface area, metal-organic frameworks (MOFs) can serve as microwave sensitizers, promoting microwave energy conversion owing to ion collisions in the porous structure of the MOFs. Moreover, iron-based compounds are known to possess peroxidase-like catalytic activity. Therefore, Fe-doped Cu bimetallic MOFs (FCMs) were prepared through a hydrothermal process. These FCM nanoparticles not only increased the efficiency of microwave-thermal energy conversion as microwave sensitizers but also promoted the generation of reactive oxygen species (ROS) by consuming glutathione (GSH) and promoted the Fenton reaction to enhance microwave dynamic therapy (MDT). The in vitro and in vivo results showed that the combination of MWA and MDT treatment effectively destroyed tumor tissues via microwave irradiation without inducing significant side effects on normal tissues. This study provides a new approach for the combined application of MOFs and microwave ablation, demonstrating excellent potential for future applications.

2.
Br J Radiol ; 97(1153): 228-236, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263817

ABSTRACT

OBJECTIVE: To establish a nomogram for predicting the pathologic complete response (pCR) in breast cancer (BC) patients after NAC by applying magnetic resonance imaging (MRI) and ultrasound (US). METHODS: A total of 607 LABC women who underwent NAC before surgery between January 2016 and June 2022 were retrospectively enrolled, and then were randomly divided into the training (n = 425) and test set (n = 182) with the ratio of 7:3. MRI and US variables were collected before and after NAC, as well as the clinicopathologic features. Univariate and multivariate logistic regression analyses were applied to confirm the potentially associated predictors of pCR. Finally, a nomogram was developed in the training set with its performance evaluated by the area under the receiver operating characteristics curve (ROC) and validated in the test set. RESULTS: Of the 607 patients, 108 (25.4%) achieved pCR. Hormone receptor negativity (odds ratio [OR], 0.3; P < .001), human epidermal growth factor receptor 2 positivity (OR, 2.7; P = .001), small tumour size at post-NAC US (OR, 1.0; P = .031), tumour size reduction ≥50% at MRI (OR, 9.8; P < .001), absence of enhancement in the tumour bed at post-NAC MRI (OR, 8.1; P = .003), and the increase of ADC value after NAC (OR, 0.3; P = .035) were all significantly associated with pCR. Incorporating the above variables, the nomogram showed a satisfactory performance with an AUC of 0.884. CONCLUSION: A nomogram including clinicopathologic variables and MRI and US characteristics shows preferable performance in predicting pCR. ADVANCES IN KNOWLEDGE: A nomogram incorporating MRI and US with clinicopathologic variables was developed to provide a brief and concise approach in predicting pCR to assist clinicians in making treatment decisions early.


Subject(s)
Breast Neoplasms , Female , Humans , Magnetic Resonance Imaging , Neoadjuvant Therapy , Nomograms , Retrospective Studies
3.
Quant Imaging Med Surg ; 13(10): 6384-6394, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37869283

ABSTRACT

Background: High-grade background parenchymal enhancement (BPE), including moderate and marked, poses a considerable challenge for the diagnosis of breast disease due to its tendency to increase the rate of false positives and false negatives. The purpose of our study was to explore whether the Kaiser score can be used for more accurate assessment of benign and malignant lesions in high-grade BPE compared with the Breast Imaging Reporting and Data System (BI-RADS). Methods: A retrospective review was conducted on consecutive breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) scans from 2 medical centers. Included were patients who underwent DCE-MRI demonstrating high-grade BPE and who had a pathology-confirmed diagnosis. Excluded were patients who had received neoadjuvant chemotherapy or who had undergone biopsy prior to MRI examination. Two physicians with more than 7 years of experience specializing in breast imaging diagnosis jointly reviewed breast magnetic resonance (MR) images. The Kaiser score was used to determine the sensitivity, specificity, and positive predictive value (PPV), and negative predictive value (NPV) of the BI-RADS from different BPE groups and different enhancement types. The performance of the Kaiser score and BI-RADS were compared according to diagnostic accuracy. Results: A total of 126 cases of high-grade BPE from 2 medical centers were included in this study. The Kaiser score had a higher specificity and PPV than did the BI-RADS (87.5% vs. 46.3%) as well as a higher PPV (94.3% vs. 79.8%). The value of diagnostic accuracy and 95% confidence interval (CI) for the Kaiser score (accuracy 0.928; 95% CI: 0.883-0.973) was larger than that for BI-RADS (accuracy 0.810; 95% CI: 0.741-0.879). Moreover, the Kaiser score had a significantly higher value of diagnostic accuracy for both mass and non-mass enhancement, especially mass lesions (Kaiser score: accuracy 0.947, 95% CI: 0.902-0.992; BI-RADS: accuracy 0.821, 95% CI: 0.782-0.860), with a P value of 0.006. Conclusions: The Kaiser score is a useful diagnostic tool for the evaluation of high-grade BPE lesions, with a higher specificity, PPV, and diagnostic accuracy as compared to the BI-RADS.

4.
J Colloid Interface Sci ; 634: 601-609, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36549208

ABSTRACT

In recent years, branched or star-shaped Au nanostructures composed of core and protruding arms have attracted much attention due to their unique optical properties and morphology. As the clinically adapted nanoagent, prussian blue (PB) has recently gained widespread attention in cancer theranostics with potential applications in magnetic resonance (MR) imaging. In this article, we propose a hybrid star gold nanostructure(Au-star@PB)as a novel theranostic agent for T1-weighted magnetic resonance imaging (MRI)/ photoacoustic imaging(PAI) and photothermal therapy (PTT) of tumors. Importantly, the Au-star@PB nanoparticles function as effective MRI/PA contrast agents in vivo by increasing T1-weighted MR/PAI signal intensity and as effective PTT agents in vivo by decreasing the tumor volume in MCF-7 tumor bearing BALB / c mouse model as well as in vitro by lessening tumor cells growth rate. Interestingly, we found the main photothermal effect of Au-star@PB is derived from Au-star, but not PB. In summary, the hybrid structure of Au-star@PB NPs with good biological safety, significant photostability, dual imaging capability, and high therapeutic efficiency, might offer a novel avenue for the future diagnosis and treatment of cancer.


Subject(s)
Nanoparticles , Neoplasms , Mice , Animals , Phototherapy/methods , Nanoparticles/chemistry , Ferrocyanides/chemistry , Magnetic Resonance Imaging/methods , Neoplasms/diagnostic imaging , Neoplasms/therapy , Contrast Media/chemistry , Mice, Inbred BALB C , Cell Line, Tumor , Gold/chemistry
5.
Br J Radiol ; 95(1140): 20220626, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36378247

ABSTRACT

OBJECTIVE: To construct a combined radiomics model based on pre-treatment ultrasound for predicting of advanced breast cancers sensitive to neoadjuvant chemotherapy (NAC). METHODS: A total of 288 eligible breast cancer patients who underwent NAC before surgery were enrolled in the retrospective study cohort. Radiomics features reflecting the phenotype of the pre-NAC tumors were extracted. With features selected using the least absolute shrinkage and selection operator (LASSO) regression, radiomics signature (Rad-score) was established based on the pre-NAC ultrasound. Then, radiomics nomogram of ultrasound (RU) was established on the basis of the best radiomic signature incorporating independent clinical features. The performance of RU was evaluated in terms of calibration curve, area under the curve (AUC), and decision curve analysis (DCA). RESULTS: Nine features were selected to construct the radiomics signature in the training cohort. Combined with independent clinical characteristics, the performance of RU for identifying Grade 4-5 patients was significantly superior than the clinical model and Rad-score alone (p < 0.05, as per the Delong test), which achieved an AUC of 0.863 (95% CI, 0.814-0.963) in the training group and 0.854 (95% CI, 0.776-0.931) in the validation group. DCA showed that this model satisfactory clinical utility, suggesting its robustness as a response predictor. CONCLUSION: This study demonstrated that RU has a potential role in predicting drug-sensitive breast cancers. ADVANCES IN KNOWLEDGE: Aiming at early detection of Grade 4-5 breast cancer patients, the radiomics nomogram based on ultrasound has been approved as a promising indicator with high clinical utility. It is the first application of ultrasound-based radiomics nomogram to distinguish drug-sensitive breast cancers.


Subject(s)
Neoplasms , Nomograms , Neoadjuvant Therapy , Retrospective Studies , Ultrasonography , Cohort Studies
6.
Br J Radiol ; 95(1136): 20220211, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35522775

ABSTRACT

OBJECTIVE: The aim of this study was to investigate and compare the diagnostic performance of dynamic contrast-enhanced (DCE)-MRI, multiparametric MRI (mpMRI), and multimodality imaging (MMI) combining mpMRI and mammography (MG) for discriminating breast non-mass-like enhancement (NME) lesions. METHODS: This retrospective study enrolled 193 patients with 199 lesions who underwent 3.0 T MRI and MG from January 2017 to December 2019. The features of DCE-MRI, turbo inversion recovery magnitude (TIRM), and diffusion-weighted imaging (DWI) were assessed by two breast radiologists. Then, all lesions were divided into microcalcification and non-microcalcification groups to assess the features of MG. Comparisons were performed between groups using univariate analyses. Then, multivariate analyses were performed to construct diagnostic models for distinguishing NME lesions. Diagnostic performance was evaluated by using the area under the curve (AUC) and the differences between AUCs were evaluated by using the DeLong test. RESULTS: Overall (n = 199), mpMRI outperformed DCE-MRI alone (AUCmpMRI = 0.924 vs. AUCDCE-MRI = 0.884; p = 0.007). Furthermore, MMI outperformed both mpMRI and MG (the microcalcification group [n = 140]: AUCMMI = 0.997 vs. AUCmpMRI = 0.978, p = 0.018 and AUCMMI = 0.997 vs. AUCMG = 0.912, p < 0.001; the non-microcalcification group [n = 59]: AUCMMI = 0.857 vs. AUCmpMRI = 0.768, p = 0.044 and AUCMMI = 0.857 vs. AUCMG = 0.759, p = 0.039). CONCLUSION & ADVANCES IN KNOWLEDGE: DCE-MRI combined with DWI and TIRM information could improve the diagnostic performance for discriminating NME lesions compared with DCE-MRI alone. Furthermore, MMI combining mpMRI and MG showed better discrimination than both mpMRI and MG.


Subject(s)
Breast Diseases , Breast Neoplasms , Multiparametric Magnetic Resonance Imaging , Breast/diagnostic imaging , Breast/pathology , Breast Diseases/pathology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Contrast Media , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Magnetic Resonance Imaging/methods , Retrospective Studies
7.
Adv Sci (Weinh) ; 5(5): 1700847, 2018 May.
Article in English | MEDLINE | ID: mdl-29876209

ABSTRACT

Oxygen (O2) plays a critical role during photodynamic therapy (PDT), however, hypoxia is quite common in most solid tumors, which limits the PDT efficacy and promotes the tumor aggression. Here, a safe and multifunctional oxygen-evolving nanoplatform is costructured to overcome this problem. It is composed of a prussian blue (PB) core and chlorin e6 (Ce6) anchored periodic mesoporous organosilica (PMO) shell (denoted as PB@PMO-Ce6). In the highly integrated nanoplatform, the PB with catalase-like activity can catalyze hydrogen peroxide to generate O2, and the Ce6 transform the O2 to generate more reactive oxygen species (ROS) upon laser irradiation for PDT. This PB@PMO-Ce6 nanoplatform presents well-defined core-shell structure, uniform diameter (105 ± 12 nm), and high biocompatibility. This study confirms that the PB@PMO-Ce6 nanoplatform can generate more ROS to enhance PDT than free Ce6 in cellular level (p < 0.001). In vivo, the singlet oxygen sensor green staining, tumor volume of tumor-bearing mice, and histopathological analysis demonstrate that this oxygen-evolving nanoplatform can elevate singlet oxygen to effectively inhibit tumor growth without obvious damage to major organs. The preliminary results from this study indicate the potential of biocompatible PB@PMO-Ce6 nanoplatform to elevate O2 and ROS for improving PDT efficacy.

8.
J Colloid Interface Sci ; 512: 439-445, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29096104

ABSTRACT

Herein, we demonstrate a coating-etching strategy to directly synthesize hollow Prussian blue (PB) nanocubes with well-dispersed Ag nanoparticles (denoted as Ag-HPB). The method is accomplished by introduction of PB precursors, K3Fe(CN)6 and Fe3+ into a reaction system containing AgNO3 and ascorbic acid, in which a series reactions contain formation of Ag nanoparticles, coating of PB on the nanoparticles, and diffusion of Ag into the PB frameworks occur. The strategy for preparation of the hollow structured Ag-HPB is intrinsically simple and does not require pre-preparation of any sacrificial templates or toxic etching agents. The obtained Ag-HPB nanocubes possess uniform size (69 nm), well-defined hollow structure, strong near-infrared photothermal conversion capacity, and excellent photoacoustic and magnetic resonance imaging abilities. Furthermore, an injectable photothermal implants are prepared for the first time by mixing the Ag-HPB nanocubes with clinically used biological glue, which significantly enhance photothermal anti-tumor efficacy, showing great potential for clinical tumor treatment.


Subject(s)
Breast Neoplasms/therapy , Ferrocyanides/administration & dosage , Hyperthermia, Induced , Metal Nanoparticles/administration & dosage , Phototherapy , Silver/chemistry , Animals , Breast Neoplasms/pathology , Female , Ferrocyanides/chemistry , Humans , Metal Nanoparticles/chemistry , Mice , Mice, Inbred BALB C , Prostheses and Implants , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
9.
Brain Imaging Behav ; 11(3): 818-828, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27189159

ABSTRACT

In this study, we used resting-state functional magnetic resonance imaging to explore the genetic effects of amyloid precursor protein (APP) or presenilins mutation and apolipoprotein E (APOE) ε4 on the default-mode network (DMN) in cognitively intact young adults (24.1 ± 2.5 years). Both the APP or presenilin-1/2 group and the APOE ε4 group had significantly lower DMN functional connectivity (FC) in the some brain regions like precuneus/middle cingulate cortices (PCu/MCC) than controls (AlphaSim corrected, P < 0.05). Only a lower FC tendency was demonstrated (control < APOE ε4 < APP or presenilin-1/2 group). Moreover, lower FC in PCu/MCC is correlated with some neuropsychological assessments such as similarity test in APOE ε4 group. These findings indicate that DMN FC alteration in APP or presenilin-1/2 or APOE ε4 subjects is prior to the occurrence of neurological alterations and clinical symptoms, and DMN FC might be a valuable biomarker to detect genetic risk in the preclinical stage.


Subject(s)
Amyloid beta-Protein Precursor/genetics , Apolipoprotein E4/genetics , Brain/physiology , Presenilin-1/genetics , Presenilin-2/genetics , Adolescent , Adult , Alzheimer Disease/genetics , Apolipoprotein E2/genetics , Brain/diagnostic imaging , Brain Mapping , Female , Genetic Predisposition to Disease , Heterozygote , Humans , Magnetic Resonance Imaging , Male , Mental Status and Dementia Tests , Mutation , Neural Pathways/diagnostic imaging , Neural Pathways/physiology , Neuropsychological Tests , Rest , Young Adult
10.
ACS Appl Mater Interfaces ; 8(27): 17038-46, 2016 Jul 13.
Article in English | MEDLINE | ID: mdl-27065014

ABSTRACT

In this work, we design mesoporous silica-coated Prussian blue nanocubes with PEGyltation to construct multifunctional PB@mSiO2-PEG nanocubes. The PB@mSiO2-PEG nanocubes have good biocompatibility, excellent photothermal transformation capacity, in vivo magnetic resonance and photoacoustic imaging ability. After loading antitumor drug doxorubicin (DOX) in the PB@mSiO2-PEG nanocubes, the constructured PB@mSiO2-PEG/DOX nanoplatforms show an excellent pH-responsive drug release character within 48 h, namely, an ultralow cumulative drug release amount of 3.1% at pH 7.4 and a high release amount of 46.6% at pH 5.0. Upon near-infrared laser irradiation, the PB@mSiO2-PEG/DOX nanoplatforms show an enhanced synergistic photothermal and chemical therapeutic efficacy for breast cancer than solo photothermal therapy or chemotherapy.


Subject(s)
Nanostructures , Antineoplastic Agents , Doxorubicin , Humans , Neoplasms , Phototherapy , Polyethylene Glycols , Silicon Dioxide
SELECTION OF CITATIONS
SEARCH DETAIL
...