Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.557
Filter
1.
J Med Food ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722249

ABSTRACT

The liver, being the most metabolically active organ, is highly vulnerable to damage caused by oxidative stress. Rosa davurica Pall. seed oil (RDPO), a novel vegetable oil, and its bioactive components have been extensively researched in the field of antioxidants. In this research, the antioxidant properties and hepatoprotection by RDPO were evaluated. A series of antioxidant evaluation systems and a CCl4-induced acute liver injury model in mice were used to investigate the antioxidant activity and hepatoprotective efficacy of RDPO. The results showed that the extraction rate of RDPO was 11.12% using the optimal extraction process. Three major unsaturated fatty acids of the oil were α-linolenic acid (11.89 ± 0.017%), linoleic acid (18.52 ± 0.072%), and oleic acid (11.54 ± 0.425%). Furthermore, its antioxidant small-molecule compounds were ß-sitosterol (1.429 ± 0.002 µg/g), α-tocopherol (1.273 ± 0.079 µg/g), ß-carotene (0.012 ± 0.001 µg/g), lycopene (0.108 ± 0.002 µg/g), squalene (178.950 ± 0.794 µg/g), total polyphenols (1.114 ± 0.032 µg GAE/mg), and total flavonoids (0.504 ± 0.009 mg RU/g), respectively. In vitro, RDPO significantly inhibited the production of ABTS+•, DPPH•, O2•-, and hydroxyl radicals, as well as Fe3+. In vivo, RDPO significantly reversed the activity of total superoxide-dismutase, catalase, L-glutathione, and the level of malondialdehyde (MDA) in liver tissue. It also obviously inhibited the activity of aspartate transaminase (AST) and the level of MDA in the serum. Therefore, RDPO has demonstrated excellent antioxidant activity and a potential liver protective effect. This effect may be ascribed to its capacity for decreasing AST activity, inhibiting lipid peroxidation, and boosting endogenous antioxidant enzyme activity. Therefore, RDPO has significant application value in the biopharmaceutical industry and as a dietary supplement.

2.
Mol Biol Evol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38723179

ABSTRACT

Despite traditional beliefs of orthologous genes maintaining similar functions across species, growing evidence points to their potential for functional divergence. C-repeat binding factors/dehydration-responsive element binding protein 1s (CBFs/DREB1s) are critical in cold acclimation, with their overexpression enhancing stress tolerance but often constraining plant growth. In contrast, a recent study unveiled a distinctive role of rice OsDREB1C in elevating nitrogen use efficiency (NUE), photosynthesis, and grain yield, implying functional divergence within the CBF/DREB1 orthologs across species. Here, we delve into divergent molecular mechanisms of OsDREB1C and AtCBF2/3/1 by exploring their evolutionary trajectories across rice and Arabidopsis genomes, regulatomes, and transcriptomes. Evolutionary scrutiny shows discrete clades for OsDREB1C and AtCBF2/3/1, with the Poaceae-specific DREB1C clade mediated by a transposon event. Genome-wide binding profiles highlight OsDREB1C's preference for GCCGAC compared to AtCBF2/3/1's preference for A/GCCGAC, a distinction determined by R12 in the OsDREB1C AP2/ERF domain. Cross-species multi-omic analyses reveal shared gene orthogroups (OGs) and underscore numerous specific OGs uniquely bound and regulated by OsDREB1C, implicated in NUE, photosynthesis, and early flowering, or by AtCBF2/3/1, engaged in hormone and stress responses. This divergence arises from gene gains/losses (∼16.7‒25.6%) and expression reprogramming (∼62.3‒66.2%) of OsDREB1C- and AtCBF2/3/1-regulated OGs during the extensive evolution following the rice-Arabidopsis split. Our findings illustrate the regulatory evolution of OsDREB1C and AtCBF2/3/1 at a genomic scale, providing insights on the functional divergence of orthologous transcription factors following gene duplications across species.

3.
Abdom Radiol (NY) ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744698

ABSTRACT

OBJECTIVE: The objective of this study was to develop a combined model based on radiomics features of Sonazoid contrast-enhanced ultrasound (CEUS) during the Kupffer phase and to evaluate its value in differentiating well-differentiated hepatocellular carcinoma (w-HCC) from atypical benign focal liver lesions (FLLs). METHODS: A total of 116 patients with preoperatively Sonazoid-CEUS confirmed w-HCC or benign FLL were selected from a prospective multiple study on the clinical application of Sonazoid in FLLs conducted from August 2020 to March 2021. According to the randomization principle, the patients were divided into a training cohort and a test cohort in a 7:3 ratio. Seventy-nine patients were used for establishing and training the radiomics model and combined model. In comparison, 37 patients were used for validating and comparing the performance of the models. The diagnostic efficacy of the models for w-HCC and atypical benign FLLs was evaluated using ROCs curves and decision curves. A combined model nomogram was created to assess its value in reducing unnecessary biopsies. RESULTS: Among the patients, there were 55 cases of w-HCC and 61 cases of atypical benign FLLs, including 28 cases of early liver abscess, 16 cases of atypical hepatic hemangioma, 8 cases of hepatocellular dysplastic nodules (DN), and 9 cases of focal nodular hyperplasia (FNH). The radiomics model and combined model we established had AUCs of 0.905 and 0.951, respectively, in the training cohort, and the AUCs of the two models in the test cohort were 0.826 and 0.912, respectively. The combined model outperformed the radiomics feature model significantly. Decision curve analysis demonstrated that the combined model achieved a higher net benefit within a specific threshold probability range (0.25 to 1.00). A nomogram of the combined model was developed. CONCLUSION: The combined model based on the radiomics features of Sonazoid-CEUS in the Kupffer phase showed satisfactory performance in diagnosing w-HCC and atypical benign FLLs. It can assist clinicians in timely detecting malignant FLLs and reducing unnecessary biopsies for benign diseases.

4.
bioRxiv ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38746230

ABSTRACT

Humans are living longer, but this is accompanied by an increased incidence of age-related chronic diseases. Many of these diseases are influenced by age-associated metabolic dysregulation, but how metabolism changes in multiple organs during aging in males and females is not known. Answering this could reveal new mechanisms of aging and age-targeted therapeutics. In this study, we describe how metabolism changes in 12 organs in male and female mice at 5 different ages. Organs show distinct patterns of metabolic aging that are affected by sex differently. Hydroxyproline shows the most consistent change across the dataset, decreasing with age in 11 out of 12 organs investigated. We also developed a metabolic aging clock that predicts biological age and identified alpha-ketoglutarate, previously shown to extend lifespan in mice, as a key predictor of age. Our results reveal fundamental insights into the aging process and identify new therapeutic targets to maintain organ health.

5.
Cyborg Bionic Syst ; 5: 0112, 2024.
Article in English | MEDLINE | ID: mdl-38725972

ABSTRACT

In this article, we study the trajectory planning and tracking control of a bionic underwater robot under multiple dynamic obstacles. We first introduce the design of the bionic leopard cabinet underwater robot developed in our lab. Then, we model the trajectory planning problem of the bionic underwater robot by combining its dynamics and physical constraints. Furthermore, we conduct global trajectory planning for bionic underwater robots based on the temporal-spatial Bezier curves. In addition, based on the improved proximal policy optimization, local dynamic obstacle avoidance trajectory replanning is carried out. In addition, we design the fuzzy proportional-integral-derivative controller for tracking control of the planned trajectory. Finally, the effectiveness of the real-time trajectory planning and tracking control method is verified by comparative simulation in dynamic environment and semiphysical simulation of UWSim. Among them, the real-time trajectory planning method has advantages in trajectory length, trajectory smoothness, and planning time. The error of trajectory tracking control method is controlled around 0.2 m.

6.
Mar Pollut Bull ; 203: 116472, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38728955

ABSTRACT

When atmospheric particles deposit to the ocean, their settling velocities and residence times associated are critical for their effects on oceanic ecosystems. We developed a hydrostatic sedimentation method using video imaging techniques to track particles of 5-20 µm in diameter falling into seawater and determine the particle settling velocities in relation to their diameter, shape, organic matter contained, and seawater salinity. The measured settling velocities varied from 0.025 to 0.41 mm/s. Irregular particle shape and organic matter contained in particles also, however, reduced the values. The settling velocities were decelerated by the dissolution process of particle in seawater. Combined with the experimental results, a formula for calculating the settling velocity formulae for atmospheric particles was estimated. Using this equation, the residence time of particles is estimated to be less than one month in continental shelf sea and more than 100 days in the oceans.

7.
J Chem Inf Model ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727192

ABSTRACT

The worldwide spread of the metallo-ß-lactamases (MBL), especially New Delhi metallo-ß-lactamase-1 (NDM-1), is threatening the efficacy of ß-lactams, which are the most potent and prescribed class of antibiotics in the clinic. Currently, FDA-approved MBL inhibitors are lacking in the clinic even though many strategies have been used in inhibitor development, including quantitative high-throughput screening (qHTS), fragment-based drug discovery (FBDD), and molecular docking. Herein, a machine learning-based prediction tool is described, which was generated using results from HTS of a large chemical library and previously published inhibition data. The prediction tool was then used for virtual screening of the NIH Genesis library, which was subsequently screened using qHTS. A novel MBL inhibitor was identified and shown to lower minimum inhibitory concentrations (MICs) of Meropenem for a panel of E. coli and K. pneumoniae clinical isolates expressing NDM-1. The mechanism of inhibition of this novel scaffold was probed utilizing equilibrium dialyses with metal analyses, native state electrospray ionization mass spectrometry, UV-vis spectrophotometry, and molecular docking. The uncovered inhibitor, compound 72922413, was shown to be 9-hydroxy-3-[(5-hydroxy-1-oxa-9-azaspiro[5.5]undec-9-yl)carbonyl]-4H-pyrido[1,2-a]pyrimidin-4-one.

8.
Organogenesis ; 20(1): 2356341, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38766777

ABSTRACT

Exosomes derived from bone marrow mesenchymal stem cells (BMSCs) exhibit considerable therapeutic potential for myocardial regeneration. In our investigation, we delved into their impact on various aspects of myocardial infarction (MI), including cardiac function, tissue damage, inflammation, and macrophage polarization in a murine model. We meticulously isolated the exosomes from TNF-α-treated BMSCs and evaluated their therapeutic efficacy in a mouse MI model induced by coronary artery ligation surgery. Our comprehensive analysis, incorporating ultrasound, serum assessment, Western blot, and qRT-PCR, revealed that exosomes from TNF-α-treated BMSCs demonstrated significant therapeutic potential in reducing MI-induced injury. Treatment with these exosomes resulted in improved cardiac function, reduced infarct area, and increased left ventricular wall thickness in MI mice. On a mechanistic level, exosome treatment fostered M2 macrophage polarization while concurrently suppressing M1 polarization. Hence, exosomes derived from TNF-α-treated BMSCs emerge as a promising therapeutic strategy for alleviating MI injury in a mouse model.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Mice, Inbred C57BL , Myocardial Infarction , Tumor Necrosis Factor-alpha , Animals , Exosomes/metabolism , Myocardial Infarction/therapy , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism , Mice , Male , Macrophages/metabolism , Disease Models, Animal , Bone Marrow Cells/cytology
9.
Anal Chim Acta ; 1309: 342668, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38772655

ABSTRACT

BACKGROUND: Surface-enhanced Raman scattering (SERS) has gained widespread use in molecule-level detection benefiting from its high sensitivity, nondestructive data acquisition, and capacity for providing molecular fingerprint information. However, the strong adhesion of target molecules to the substrate (known as the "memory effect") inherently hinders the reusability of SERS substrates. Research has shown that self-cleaning SERS substrates based on versatile semiconductor materials with SERS enhancement capabilities and solar photocatalytic properties offer an effective platform for the sensitive detection and degradation of harmful molecules. RESULTS: In this research, a resuable SERS-active substrate was facilely fabricated by anchoring silver nanoparticles (AgNPs) to the edges of MoS2 nanosheet decorated on ZnO nanorod arrays (NRAs). This innovative design exhibited a remarkable SERS enhancement factor (EF) of 4.6 × 107 and demonstrated significant solar photocatalytic efficiency. Such superior characteristics of ternary plasma heterojunction were ascribable to the synergistic effect of the "Schottky barrier" and "hot spots" between MoS2 and AgNPs, the inherent chemical enhancement proficiency of the MoS2/ZnO NRAs heterojunction, as well as the ultrafast electron transfer within the ternary heterojunction. SIGNIFICANCE: The developed ternary heterojunction substrate enabled highly sensitive SERS detection of trace amounts of organic molecules. Moreover, this SERS substrate exhibited self-cleaning and recyclability via solar-light-driven photocatalysis. This bifunctional recyclable SERS substrate proved capable of meeting various requirements for routine monitoring of environmental organic pollutants and provided a robust avenue for advancing energy utilization materials that serve as high-performance SERS sensors and catalysts.

10.
Plant Sci ; : 112114, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38735397

ABSTRACT

Argonaute (AGO) proteins are the core components of the RNA-induced silencing complexes (RISC) in the cytoplasm and nucleus, and are necessary for the development of plant shoot meristem, which gives rise to the above-ground plant body. In this study, we identified 23 Phyllostachys edulis AGO genes (PhAGOs) that were distributed unequally on the 14 unmapped scaffolds. Gene collinearity and phylogeny analysis showed that the innovation of PhAGO genes was mainly due to dispersed duplication and whole-genome duplication, which resulted in the enlarged PhAGO family. PhAGO genes were expressed in a temporal-spatial expression pattern, and they encoded proteins differently localized in the cytoplasm and/or nucleus. Overexpression of the PhAGO2 and PhAGO4 genes increased the number of tillers or leaves in Oryza sativa and affected the shoot architecture of Arabidopsis thaliana. These results provided insight into the fact that PhAGO genes play important roles in plant development.

11.
Angew Chem Int Ed Engl ; : e202404861, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738502

ABSTRACT

Solid oxide electrolysis cells are prospective approaches for CO2 utilization but face significant challenges due to the sluggish reaction kinetics and poor stability of the fuel electrodes. Herein, we strategically addressed the long-standing trade-off phenomenon between enhanced exsolution and improved structural stability via topotactic ion exchange. The surface dynamic reconstruction of the MnOx/La0.7Sr0.3Cr0.9Ir0.1O3-δ (LSCIr) catalyst was visualized at the atomic scale. Compared with the Ir@LSCIr interface, the in situ self-assembled Ir@MnOx/LSCIr interface exhibited greater CO2 activation and easily removable carbonate intermediates, thus reached a 42% improvement in CO2 electrolysis performance at 1.6 V. Furthermore, an improved CO2 electrolysis stability was achieved due to the uniformly wrapped MnOx shell of the Ir@MnOx/LSCIr cathode. Our approach enables a detailed understanding of the dynamic microstructure evolution at active interfaces and provides a roadmap for the rational design and evaluation of efficient metal/oxide catalysts for CO2 electrolysis.

12.
Biomacromolecules ; 25(5): 3122-3130, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38696355

ABSTRACT

Synthesis of polysaccharide-b-polypeptide block copolymers represents an attractive goal because of their promising potential in delivery applications. Inspired by recent breakthroughs in N-carboxyanhydride (NCA) ring-opening polymerization (ROP), we present an efficient approach for preparation of a dextran-based macroinitiator and the subsequent synthesis of dextran-b-polypeptides via NCA ROP. This is an original approach to creating and employing a native polysaccharide macroinitiator for block copolymer synthesis. In this strategy, regioselective (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) oxidation of the sole primary alcohol located at the C-6 position of the monosaccharide at the nonreducing end of linear dextran results in a carboxylic acid. This motif is then transformed into a tetraalkylammonium carboxylate, thereby generating the dextran macroinitiator. This macroinitiator initiates a wide range of NCA monomers and produces dextran-b-polypeptides with a degree of polymerization (DP) of the polypeptide up to 70 in a controlled manner (D < 1.3). This strategy offers several distinct advantages, including preservation of the original dextran backbone structure, relatively rapid polymerization, and moisture tolerance. The dextran-b-polypeptides exhibit interesting self-assembly behavior. Their nanostructures have been investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM), and adjustment of the structure of block copolymers allows self-assembly of spherical micelles and worm-like micelles with varied diameters and aspect ratios, revealing a range of diameters from 60 to 160 nm. Moreover, these nanostructures exhibit diverse morphologies, including spherical micelles and worm-like micelles, enabling delivery applications.


Subject(s)
Dextrans , Peptides , Polymerization , Dextrans/chemistry , Peptides/chemistry , Peptides/chemical synthesis , Polymers/chemistry , Polymers/chemical synthesis , Cyclic N-Oxides/chemistry , Anhydrides/chemistry , Polysaccharides/chemistry , Micelles
13.
Int J Oral Sci ; 16(1): 36, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730256

ABSTRACT

N1-methyladenosine (m1A) RNA methylation is critical for regulating mRNA translation; however, its role in the development, progression, and immunotherapy response of head and neck squamous cell carcinoma (HNSCC) remains largely unknown. Using Tgfbr1 and Pten conditional knockout (2cKO) mice, we found the neoplastic transformation of oral mucosa was accompanied by increased m1A modification levels. Analysis of m1A-associated genes identified TRMT61A as a key m1A writer linked to cancer progression and poor prognosis. Mechanistically, TRMT61A-mediated tRNA-m1A modification promotes MYC protein synthesis, upregulating programmed death-ligand 1 (PD-L1) expression. Moreover, m1A modification levels were also elevated in tumors treated with oncolytic herpes simplex virus (oHSV), contributing to reactive PD-L1 upregulation. Therapeutic m1A inhibition sustained oHSV-induced antitumor immunity and reduced tumor growth, representing a promising strategy to alleviate resistance. These findings indicate that m1A inhibition can prevent immune escape after oHSV therapy by reducing PD-L1 expression, providing a mutually reinforcing combination immunotherapy approach.


Subject(s)
B7-H1 Antigen , Oncolytic Viruses , Proto-Oncogene Proteins c-myc , Signal Transduction , Animals , Mice , Proto-Oncogene Proteins c-myc/metabolism , Humans , Adenosine/analogs & derivatives , Down-Regulation , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/therapy , Oncolytic Virotherapy/methods , PTEN Phosphohydrolase , Mice, Knockout , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/therapy , Simplexvirus , Cell Line, Tumor
14.
ACS Sens ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768377

ABSTRACT

Obtaining bioenergy from human movement is not only a prospective complementation to electrochemical power supply such as batteries in portable electronics but also a decipherable process for developing self-powered sensors that can simultaneously monitor the physiological movement. In this study, a low-cost, robust, and environmentally friendly triboelectric nanogenerator (TENG) was prepared with enhanced mechanical stability and tunneling conductivity on the base of cotton fabric. The as-designed TENG may produce energy sustainably by physical movements, and it can yield an amazing 417 V open-circuit voltage, 11.7 µA short-circuit current, and 237.60 mW/m2 excellent power density, showcasing its potential for efficient energy conversion in the single-electrode mode. Besides, such a design also shows real-time tactile perception ability toward human physiological signal and body motion where intelligent application of these environmental benign TENGs in sports and writing training were demonstrated, thus providing vital instruction for the creation of versatile and sustainable TENGs in the Internet of Things era.

15.
Virol Sin ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38768713

ABSTRACT

As of December 2022, 2,603 cases laboratory-identified Middle East respiratory syndrome coronavirus (MERS-CoV) infections and 935 associated deaths, with a mortality rate of 36%, had been reported to the World Health Organization (WHO). However, there are still no vaccines for MERS-CoV, which makes the prevention and control of MERS-CoV difficult. In this study, we constructed two vaccine candidates of DNA and replicating Vaccinia Tian Tan (VTT) vector that carried the MERS-CoV Spike (S) protein. Compared with homologous immunization with either vaccine, mice immunized with DNA vaccine prime and VTT vaccine boost exhibited much stronger and durable humoral and cellular immune responses. The mice immunized generated robust binding antibodies and broader neutralizing antibodies against the EMC2012, England1 and KNIH strains of MERS-CoV. Prime-Boost immunization also induced strong MERS-S specific T cells responses, with high memory and poly-functional (CD107a-IFN-γ-TNF-α) effector CD8+ T cells. In conclusion, the research demonstrated that DNA-Prime/VTT-Boost strategy could elicit robust and balanced humoral and cellular immune responses against MERS-CoV-S. This study not only provides a promising set of MERS-CoV vaccine candidates but also proposes a heterologous sequential immunization strategy worthy of further development.

16.
Front Neurorobot ; 18: 1401075, 2024.
Article in English | MEDLINE | ID: mdl-38774519

ABSTRACT

Introduction: In recent years, the perceptual capabilities of robots have been significantly enhanced. However, the task execution of the robots still lacks adaptive capabilities in unstructured and dynamic environments. Methods: In this paper, we propose an ontology based autonomous robot task processing framework (ARTProF), to improve the robot's adaptability within unstructured and dynamic environments. ARTProF unifies ontological knowledge representation, reasoning, and autonomous task planning and execution into a single framework. The interface between the knowledge base and neural network-based object detection is first introduced in ARTProF to improve the robot's perception capabilities. A knowledge-driven manipulation operator based on Robot Operating System (ROS) is then designed to facilitate the interaction between the knowledge base and the robot's primitive actions. Additionally, an operation similarity model is proposed to endow the robot with the ability to generalize to novel objects. Finally, a dynamic task planning algorithm, leveraging ontological knowledge, equips the robot with adaptability to execute tasks in unstructured and dynamic environments. Results: Experimental results on real-world scenarios and simulations demonstrate the effectiveness and efficiency of the proposed ARTProF framework. Discussion: In future work, we will focus on refining the ARTProF framework by integrating neurosymbolic inference.

17.
J Elder Abuse Negl ; 36(3): 291-309, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38706249

ABSTRACT

Death anxiety arousal, provoked by anticipating self-nonexistence, may be used as a fraud tactic by scammers on older adults; however, little is known about how it affects older adults' decision making when confronted with a scam and the mechanisms underlying these effects. This study used a questionnaire survey and experimental design to examine them. In Study 1, 307 older adults in China completed questionnaires. The results showed a positive link between death anxiety and vulnerability to fraud, partially mediated by materialism. In Study 2, 82 older adults in China were randomly assigned to the mortality salience group and control group to examine whether death anxiety arousal can increase older adults' vulnerability to fraud and the mediating role of materialism. The results indicated that death anxiety and materialism increase the risk of consumer products and services fraud; therefore, targeting these risk factors might protect older adults from fraud.


Subject(s)
Anxiety , Attitude to Death , Fraud , Humans , Aged , Male , Female , China/epidemiology , Aged, 80 and over , Surveys and Questionnaires , Middle Aged
18.
ACS Nano ; 18(20): 13286-13297, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38728215

ABSTRACT

The ideal interface design between the metal and substrate is crucial in determining the overall performance of the alkyne semihydrogenation reaction. Single-atom alloys (SAAs) with isolated dispersed active centers are ideal media for the study of reaction effects. Herein, a charge-asymmetry "armor" SAA (named Pd1Fe SAA@PC), which consists of a Pd1Fe alloy core and a semiconducting P-doped C (PC) shell, is rationally designed as an ideal catalyst for the selective hydrogenation of alkynes with high efficiency. Multiple spectroscopic analyses and density functional theory calculations have demonstrated that Pd1Fe SAA@PC is dual-regulated by lattice tensile and Schottky effects, which govern the selectivity and activity of hydrogenation, respectively. (1) The PC shell layer applied an external traction force causing a 1.2% tensile strain inside the Pd1Fe alloy to increase the reaction selectivity. (2) P doping into the C-shell layer realized a transition from a p-type semiconductor to an n-type semiconductor, thereby forming a unique Schottky junction for advancing alkyne semihydrogenation activity. The dual regulation of lattice strain and the Schottky effect ensures the excellent performance of Pd1Fe SAA@PC in the semihydrogenation reaction of phenylethylene, achieving a conversion rate of 99.9% and a selectivity of 98.9% at 4 min. These well-defined interface modulation strategies offer a practical approach for the rational design and performance optimization of semihydrogenation catalysts.

19.
Nat Commun ; 15(1): 3669, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693119

ABSTRACT

Oncolytic viruses (OVs) show promise as a cancer treatment by selectively replicating in tumor cells and promoting antitumor immunity. However, the current immunogenicity induced by OVs for tumor treatment is relatively weak, necessitating a thorough investigation of the mechanisms underlying its induction of antitumor immunity. Here, we show that HSV-1-based OVs (oHSVs) trigger ZBP1-mediated PANoptosis (a unique innate immune inflammatory cell death modality), resulting in augmented antitumor immune effects. Mechanistically, oHSV enhances the expression of interferon-stimulated genes, leading to the accumulation of endogenous Z-RNA and subsequent activation of ZBP1. To further enhance the antitumor potential of oHSV, we conduct a screening and identify Fusobacterium nucleatum outer membrane vesicle (Fn-OMV) that can increase the expression of PANoptosis execution proteins. The combination of Fn-OMV and oHSV demonstrates potent antitumor immunogenicity. Taken together, our study provides a deeper understanding of oHSV-induced antitumor immunity, and demonstrates a promising strategy that combines oHSV with Fn-OMV.


Subject(s)
Fusobacterium nucleatum , Herpesvirus 1, Human , Oncolytic Virotherapy , Oncolytic Viruses , RNA-Binding Proteins , Herpesvirus 1, Human/immunology , Herpesvirus 1, Human/genetics , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Animals , Humans , Oncolytic Virotherapy/methods , Mice , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/immunology , Cell Line, Tumor , Fusobacterium nucleatum/immunology , Neoplasms/therapy , Neoplasms/immunology , Female , Immunity, Innate , Mice, Inbred BALB C
20.
Food Chem ; 451: 139451, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38703724

ABSTRACT

Active antibacterial materials play an important role in solving food safety problems caused by pathogen contamination. In this study, a composite active antibacterial material with the synergistic antibacterial effectiveness of photothermal, photodynamic and the surface charge of polyphenols was developed, where the multi-porous polyphenol functionalized metal-organic frameworks (ZIF-8-TA) were used as the framework carrier, and black phosphorus quantum dots (BPQDs) were used as the photosensitive source. The resulted ZIF-8-TA/PBQDs possesses excellent photothermal conversion efficiency (27.92%), photodynamic performance and surface charge, and these factors ensure the outstanding broad-spectrum antibacterial performance (100%). Multifunctional characteristics and excellent biocompatibility endow the materials with vast potential for foodstuff packaging. The results showed that the composite antibacterial film produced by doping ZIF-8-TA/PBQDs into chitosan could effectively prolong the shelf life of foodstuff compared with commercial membrane. The successful implementation of this research provides a new idea for controlling microbial contamination and developing multifunctional antibacterial materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...