Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 379, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38615072

ABSTRACT

Electroencephalography (EEG) microstate analysis is a neuroimaging analytical method that has received considerable attention in recent years and is widely used for analysing EEG signals. EEG is easily influenced by internal and external factors, which can affect the repeatability and stability of EEG microstate analysis. However, there have been few reports and publicly available datasets on the repeatability of EEG microstate analysis. In the current study, a 39-year-old healthy male underwent a total of 60 simultaneous electroencephalography and electrocardiogram measurements over a period of three months. After the EEG recording was completed, magnetic resonance imaging (MRI) was also conducted. To date, this EEG dataset has the highest number of repeated measurements for one individual. The dataset can be used to assess the stability and repeatability of EEG microstates and other analytical methods, to decode resting EEG states among subjects with open eyes, and to explore the stability and repeatability of cortical spatiotemporal dynamics through source analysis with individual MRI.


Subject(s)
Electroencephalography , Adult , Humans , Male , Electrocardiography , Neuroimaging
2.
MethodsX ; 12: 102700, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38633419

ABSTRACT

Interstitial fluid, owing to its similarity to blood components and higher sensitivity and specificity, finds widespread application in disease diagnosis and tumor marker detection. However, collecting interstitial fluid, particularly from the deep subcutaneous connective tissue, remains challenging.•This study aimed to compare three different collection methods - push-pull perfusion, multi-filament nylon thread implantation, and tissue centrifugation - for collecting interstitial fluid from the subcutaneous connective tissue layer of mini-pigs. High-performance ion chromatography was employed to analyze the conventional cation components in the samples and compare ion composition analysis between the different methods.•Results indicated that while the distribution of conventional cations in the interstitial fluid collected by the three methods was generally consistent, there were slight variations in the detection rates and concentrations of different ions. Hence, suitable collection methods should be selected based on the ions or collection sites of interest.

SELECTION OF CITATIONS
SEARCH DETAIL