Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 257(Pt 2): 128738, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38092108

ABSTRACT

To prepare fine and stable nanocarriers for curcumin using a highly efficient and convenient method, nanoprecipitation combined with ultrasonication and a high-speed dispersion (US+HSS) method were used to prepare short amylose nanoparticles with pre-formed helical structures. Their morphology, structural characteristics, and embedding effects for curcumin were investigated. The results showed that the optimal ratio of ethanol to short amylose solution and ultrasonic time was 4:1 and 4 min, respectively. The nanoparticles showed a small size (82.43 nm), relatively high loading capacity (11.57 %), and a peak gelatinization temperature of 97.74 °C. Compared to the nanoprecipitation method, the short amylose nanoparticles prepared using the US+HSS method possessed a higher V-type crystalline structure ratio. In addition, the US+HSS method was easier to use to prepare nanoparticles with high stability against NaCl, and the stable nanoparticles showed the best in vitro sustained release effect for curcumin. The Peppas-Sahlin model was the optimal model that matched curcumin release from nanoparticles during digestion.


Subject(s)
Curcumin , Nanoparticles , Curcumin/chemistry , Amylose/chemistry , Temperature , Nanoparticles/chemistry , Particle Size
2.
Inorg Chem ; 62(22): 8626-8634, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37219523

ABSTRACT

In situ fabrication of lead halide perovskite quantum dots (PQDs) is important for narrow-band emitters for LED displays due to the simple work procedure and convenient usability; however, the growth of PQDs is not readily controllable in the preparation, resulting in low quantum efficiency and environmental instability of PQDs. Here, we demonstrate an effective strategy to controllably prepare CsPbBr3 PQDs in polystyrene (PS) under the regulation of methylammonium bromide (MABr) via electrostatic spinning and thermal annealing techniques. MA+ slowed down the growth of CsPbBr3 PQDs and acted as a surface defect passivation reagent, which was proved by Gibbs free energy simulation, static fluorescence spectra, transmission electron microscopy, and time-resolved photoluminescence (PL) decay spectra. Among a series of prepared Cs1-xMAxPbBr3@PS (0 ≤ x ≤ 0.2) nanofibers, Cs0.88MA0.12PbBr3@PS shows the regular particle morphology of CsPbBr3 PQDs and the highest photoluminescence quantum yield of up to 39.54%. The PL intensity of Cs0.88MA0.12PbBr3@PS is 90% of the initial intensity after immersing in water for 45 days and 49% of the initial value after persistent ultraviolet (UV) irradiation for 27 days. A high color gamut containing 127% of the National Television Systems Committee standard with long-time working stability was also obtained on light-emitting diode package measurements. These results demonstrate that MA+ can effectively control the morphology, humidity, and optical stability of CsPbBr3 PQDs in the PS matrix.

3.
Biomed Pharmacother ; 141: 111864, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34323698

ABSTRACT

Brain insulin signal anomalies are implicated in Alzheimer's disease (AD) pathology. In this background, metformin, an insulin sensitizer's neuroprotective effectiveness, has been established in the prior findings. In the present investigation, combining an epigenetic modulator, romidepsin, and metformin will improve the gene expressions of neurotrophic factors and reduce AD-associated biochemical and cellular changes by loading them mainly into a nanocarrier surface-modified framework for improved therapeutic effectiveness and bioavailability. In the present investigation, the mediated intra-cerebroventricular streptozocin (3 mg/kg) AD of the model was loaded with metformin and romidepsin into a poloxamer stabilized polymer nanocarrier system. Free combination drug therapy (Romidepsin 25 mg/kg and metformin 5 mg/kg) reduced biochemical and cellular variations over three weeks, respectively, compared to either free treatment (Romidepsin 50 mg/kg and metformin 10 mg/kg). The nanoformulations (Romidepsin 25 mg/kg and Metformin 5 mg/kg), as shown by enhanced significantly reduce stress and high neurotrophic factors, has also exerted superior neurological effectiveness than the free combination of drugs. Eventually, through the Poloxamer stable polymeric nanocarrier framework, the synergistic neuroprotective efficacy of metformin and romidepsin has improved.


Subject(s)
Alzheimer Disease/drug therapy , Antibiotics, Antineoplastic/therapeutic use , Depsipeptides/therapeutic use , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Streptozocin/therapeutic use , Animals , Antibiotics, Antineoplastic/administration & dosage , Biological Availability , Depsipeptides/administration & dosage , Drug Carriers , Drug Synergism , Drug Therapy, Combination , Epigenesis, Genetic/drug effects , Hypoglycemic Agents/administration & dosage , Injections, Intraventricular , Metformin/administration & dosage , Mice , Nanostructures , Nerve Growth Factors/biosynthesis , Poloxamer , Streptozocin/administration & dosage
4.
Acta Biomater ; 133: 280-296, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33894349

ABSTRACT

Adhesion formation during tendon healing remains a severe problem in clinical practice. Multiple factors contribute to postoperative adhesion formation, and macrophage-driven inflammation is thought to be greatly involved in this process. We hypothesize that reducing macrophage-mediated inflammation in the injured tendon by regulating M1 to M2 macrophage polarization may effectively inhibit adhesion formation. Here, we developed an acellular immunomodulatory biomaterial consisting of an electrospun polycaprolactone/silk fibroin (PCL/SF) composite fibrous scaffold functionalized with mesenchymal stem cell (MSC)-derived extracellular matrix (ECM). To enhance the immunoregulatory potential of MSCs, we performed inflammatory licensing with IFN-γ to obtain immunomodulatory ECM (iECM). Proteomic analyses of MSCs and their secreted ECM components from different culture conditions revealed the MSC-ECM molecular signatures and the potential mechanism of ECM immunoregulation. Then, the immunoregulatory potential of the iECM-modified scaffold was evaluated in vitro and in vivo. Relative to the PCL/SF fibrous scaffold, the iECM-functionalized scaffold facilitated M2 macrophage polarization and inhibited the expression of multiple cytokines (IL-1ß, IL-6, CXCL11, IL-10, IL-1R2, and TGF-ß1) in vitro, strongly suggesting the immunosuppressive ability of iECM derived from inflammatory licensed MSCs. Consistent with the in vitro findings, the results of rat subcutaneous implantation indicated that a markedly lower foreign-body reaction (FBR) was obtained in the PCL/SF-iECM group than in the other groups, as evidenced by thinner fibrotic capsule formation, less type I collagen production and more M2-type macrophage polarization. In the rat Achilles tendon injury model, the PCL/SF-iECM scaffold greatly mitigated tendon adhesion with clear sheath space formation between the tendon and the scaffold. These data highlight the immunomodulatory potential of iECM-functionalized fibrous scaffolds to attenuate FBR by modulating M2 macrophage polarization, thereby preventing tendon adhesion. STATEMENT OF SIGNIFICANCE: Electrospun PCL/SF fibrous scaffolds functionalized with ECM secreted by MSCs stimulated by inflammatory factor IFN-γ was developed that combined physical barrier and immunomodulatory functions to prevent tendon adhesion formation. PCL/SF micro-nanoscale bimodal fibrous scaffolds prepared by emulsion electrospinning possess high porosity and a large pore size beneficial for nutrient transport to promote intrinsic healing; moreover, surface modification with immunomodulatory ECM (iECM) mitigates the FBR of fibrous scaffolds to prevent tendon adhesion. The iECM-functionalized electrospun scaffolds exhibit powerful immunomodulatory potency in vitro and in vivo. Moreover, the iECM-modified scaffolds, as an anti-adhesion physical barrier with immunomodulatory ability, have an excellent performance in a rat Achilles tendon adhesion model. MSC secretome-based therapeutics, as an acellular regenerative medicine strategy, are expected to be applied to other inflammatory diseases due to its strong immunoregulatory potential.


Subject(s)
Achilles Tendon , Mesenchymal Stem Cells , Animals , Extracellular Matrix , Foreign-Body Reaction , Proteomics , Rats , Tissue Scaffolds
5.
ACS Biomater Sci Eng ; 7(3): 841-851, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33715375

ABSTRACT

Enthesis injury repair remains a huge challenge because of the unique biomolecular composition, microstructure, and mechanics in the interfacial region. Surgical reconstruction often creates new bone-scaffold interfaces with mismatched properties, resulting in poor osseointegration. To mimic the natural interface tissue structures and properties, we fabricated a nanofibrous scaffold with gradient mineral coating based on 10 × simulated body fluid (SBF) and silk fibroin (SF). We then characterized the physicochemical properties of the scaffold and evaluated its biological functions both in vitro and in vivo. The results showed that different areas of SF nanofibrous scaffold had varying levels of mineralization with disparate mechanical properties and had different effects on bone marrow mesenchymal stem cell growth and differentiation. Furthermore, the gradient scaffolds exhibited an enhancement of integration in the tendon-to-bone interface with a higher ultimate load and more fibrocartilage-like tissue formation. These findings demonstrate that the silk-based nanofibrous scaffold with gradient mineral coating can regulate the formation of interfacial tissue and has the potential to be applied in interface tissue engineering.


Subject(s)
Fibroins , Nanofibers , Tendons/surgery , Tissue Engineering , Tissue Scaffolds
6.
J Tissue Eng Regen Med ; 14(8): 1063-1076, 2020 08.
Article in English | MEDLINE | ID: mdl-32483895

ABSTRACT

Anterior cruciate ligament (ACL) regeneration is severely affected by the injury-induced overexpression of matrix metalloproteinases (MMPs) and downregulation of lysyl oxidase (LOX). Previous studies have focused on how the expression of MMPs and downregulation of LOX are physiologically balanced at injured sites for regenerating the ACL tissue, but the role of LOX in regulating cellular functions has not been investigated yet. Herein, we conducted an in vitro cellular experiment and unexpectedly found that exogenous LOX inhibited the expression of MMPs and inflammatory factors and recovered the cell growth; thus, LOX strongly inhibited the tumor necrosis factor-alpha (TNF-α)-induced inflammatory responses. In an in vivo animal model, LOX supplementation suppressed the expression of TNF-α in injured ACLs and promoted the recovery of the damaged tissues. RNA-sequencing-identified differentially expressed genes (DEGs) were highly enriched in the nuclear factor-kappa B (NF-κB), chemokine, cytokine-cytokine receptor interaction, Toll-like receptor, and TNF signaling pathways. Immunofluorescence tracing was employed to localise the exogenous LOX in the cell nucleus; the exogenous LOX indirectly suggests that it has other biological roles apart from the cross-linking of the extracellular matrix. Protein-protein interaction network analysis revealed the anti-inflammatory effect of LOX was alleviated by silencing the myotrophin (MTPN) expression, suggesting that LOX might interact with MTPN and regulate inflammation. Finally, this study suggests that LOX can inhibit the inflammatory response of ACL fibroblasts (ACLfs) and promote the recovery of the damaged ACL tissue through the MTPN-mediated NF-κB signaling pathway.


Subject(s)
Anterior Cruciate Ligament Injuries/metabolism , Anterior Cruciate Ligament/physiology , Fibroblasts/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , NF-kappa B/metabolism , Protein-Lysine 6-Oxidase/metabolism , Signal Transduction , Humans , Inflammation/metabolism , Regeneration
7.
Inflammation ; 43(5): 1742-1750, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32474881

ABSTRACT

Osteoarthritis (OA) is a chronic degenerative joint disease which is greatly affected by the inflammatory response triggered by the NF-κB signaling pathway. Alpinetin (APT) is a natural flavonoid compound, which has been reported to have many important biological activities such as antibacterial, antitumor, and anti-inflammatory. However, the action of its effect on chondrocytes in OA has yet to be elucidated. In this study, we investigated APT's anti-inflammatory action. The effects of APT on cell viability and cytotoxicity of rat chondrocytes was investigated by CCK8. Western blotting, qRT-PCR, and immunofluorescent staining were used to elucidate the molecular mechanisms and signaling pathways of APT mediating anti-inflammatory effects on chondrocytes. An OA model was induced by destabilization of the medial meniscus (DMM) in rats, then APT was injected into the knee articular cavity to examine its anti-inflammatory effects in vivo. These results showed that APT could reduce the TNF-α-induced increase of MMP-13 and ADAMTS-5 and decrease of COL2A1 levels. APT antagonized TNF-α-induced down-regulation of BCL-2 and CDK1. Further studies have shown that APT simultaneously repressed cell nucleus translocation of p65 and the phosphorylation of IκB and activated the phosphorylation of ERK. In vivo, APT suppressed cartilage matrix degradation. In conclusion, APT appears to favorably modulate anti-inflammatory effects in chondrocytes making it a promising compound for OA treatment. Graphical Abstract Inhibitory effects of Alpinetin on TNF-α-induced NF-κB activation resulted in destruction of cartilage in rat OA chondrocytes in vitro. The TNF-α receptor were stimulated by TNF-α, activating the cytoplasmic IκBα kinases(IKKS), then IKKs will be phosphorylated, and subsequently degraded by the ubiquitin-proteasome system. NF-κB transfer to the nucleus and bind various NF-κB regulates the NF-κB recognition site in the promoter region. Which triggers the gene expression of pro-inflammatory and pro-apoptotic. However, Alpinetin could inhibits the NF-κB signaling pathway in different ways: APT inhibits IκBα phosphorylation, preventing phosphorylated ubiquitination of IκBα further. Moreover, APT blocks translocation of the activated NF-κB to the nucleus, to protect the cartilage tissue from damage.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Chondrocytes/drug effects , Flavanones/therapeutic use , MAP Kinase Signaling System/drug effects , NF-kappa B/antagonists & inhibitors , Osteoarthritis/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Chondrocytes/metabolism , Cytoprotection/drug effects , Cytoprotection/physiology , Dose-Response Relationship, Drug , Flavanones/pharmacology , MAP Kinase Signaling System/physiology , NF-kappa B/metabolism , Osteoarthritis/metabolism , Osteoarthritis/pathology , Rats , Rats, Sprague-Dawley
8.
Cell Prolif ; 52(5): e12666, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31407423

ABSTRACT

OBJECTIVES: Cartilaginous tissue degradation occurs because of the lack of survival of chondrocytes. Here, we ascertained whether bakuchiol (BAK) has the capability of activating chondrocyte proliferation. MATERIALS AND METHODS: The effect of BAK on the proliferation of rat chondrocytes at a concentration of 10 and 20 µmol/L was investigated. The molecular mechanisms involving target binding and signalling pathways were elucidated by RNA-sequencing, qPCR, molecular docking and Western blotting. Matrigel mixed with bakuchiol was implanted locally into rat knee articular cartilage defects to verify the activation of chondrocytes due to bakuchiol in vivo. RESULTS: Bakuchiol implantation resulted in the activation of rat chondrocyte proliferation in a dose-dependent manner. RNA-sequencing revealed 107 differentially expressed genes (DEGs) with 75 that were up-regulated and 32 that were down-regulated, indicating increased activation of the PI3K-Akt and cell cycle pathways. Activation of the phosphorylation of Akt, ERK1/2 and their inhibitors blocked the proliferative effect of bakuchiol treatment, confirming its direct involvement in these signal transduction pathways. Molecular docking and siRNA silencing revealed that estrogen receptor-α (ERα) was the target of bakuchiol in terms of its cell proliferative effect via PI3K activation. Two weeks after implantation of bakuchiol, the appearance and physiological structure of the articular cartilage was more integrated with abundant chondrocytes and cartilage matrix compared to that of the control. CONCLUSIONS: Bakuchiol demonstrated significant bioactivity towards chondrocyte proliferation via the PI3K-Akt and ERK1/2 pathways mediated by estrogen receptor activation and exhibited enhanced promotion of the remodelling of injured cartilage.


Subject(s)
Cartilage, Articular/physiology , Cell Proliferation/drug effects , Phenols/pharmacology , Receptors, Estrogen/metabolism , Signal Transduction/drug effects , Animals , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Chondrocytes/cytology , Chondrocytes/metabolism , Down-Regulation/drug effects , Male , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Regeneration/drug effects
9.
Mater Sci Eng C Mater Biol Appl ; 89: 95-105, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29752124

ABSTRACT

Infection associated with orthopedic implants is the chief cause of implant failure. An important consideration to prevent the infection at implants is to inhibit the biofilm formation for the initial 6 h. Therefore, we fabricated hyaluronidase-sensitive multilayers of chitosan (Chi)/sodium hyaluronate-lauric acid (SL) onto the surface of bone morphogenetic protein 2 (BMP2) loaded titanium nanotube (TNT) via spin-assisted layer-by-layer technique. The results of both Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (1H NMR) confirmed the successful synthesis of SL. The multilayer structure on BMP2 loaded TNT was characterized by field-emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and water contact angle, respectively. The release profiles confirmed that hyaluronidase could trigger the release of lauric acid (LA) from the SL multilayer and accelerate the release of BMP2 in the system. The hyaluronidase-sensitive-multilayer-coated BMP2-loaded TNT (TNT/BMP2/(Chi/SL/Chi/Gel)4) not only demonstrated good antibacterial capability, but also showed good biocompatibility in in vitro usage, which was supported by the efficient growth inhibition of both Staphylococcus aureus and Escherichia coli, as well as higher cell viability, alkaline phosphatase activity, mineralization capability, and higher gene expression of osteoblasts on TNT/BMP2/(Chi/SL/Chi/Gel)4. This study developed an alternative approach to fabricate effective antibacterial implants for orthopedic implantation.


Subject(s)
Biocompatible Materials/chemistry , Bone Morphogenetic Protein 2/chemistry , Hyaluronoglucosaminidase/metabolism , Nanotubes/chemistry , Titanium/chemistry , Alkaline Phosphatase/metabolism , Animals , Biocompatible Materials/pharmacology , Bone Morphogenetic Protein 2/metabolism , Cell Differentiation/drug effects , Cell Survival/drug effects , Chitosan/chemistry , Escherichia coli/drug effects , Hyaluronic Acid/chemistry , Lauric Acids/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteogenesis/drug effects , Rats , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects
10.
J Mater Chem B ; 6(32): 5290-5302, 2018 Aug 28.
Article in English | MEDLINE | ID: mdl-32254766

ABSTRACT

Bacterial biofilm formation and oxidative stress induced by the production of reactive oxygen species (ROS) are major causes of implant failure. An emerging approach to overcome these issues is to combine chitosan-polycaprolactone (PCL) nanofibers and polyelectrolyte multilayers composed of tannic acid (TA) and gentamicin sulfate (GS) for the localized co-delivery of antioxidants and antibiotics from the titanium surface. The integration of nanofibers (NFs) and layer-by-layer (LBL) technology could provide a larger surface area and thus increase the number of cationic sites of Ti substrates. The coating of NF substrates with TA/GS resulted in higher (p < 0.05 or p < 0.01) cellular activities than those of Ti substrates, including enhanced proliferation and gene expression. Furthermore, in vitro investigation demonstrated that TA/GS-incorporated Ti-polydopamine (PDA)/NF implants exhibited excellent stability, and antibacterial and antioxidant properties. The results showed that Ti-PDA/NF/LBL substrates have a biodegradable character in vivo. All the results indicated that the combination of NFs and the bacteria-triggered antibiotic-releasing coating could be used for the tailored co-delivery of antibacterial and antioxidant agents from various metallic implantable devices to effectively improve early bone healing even under ROS stress and decrease the risk of biofilm-associated infections in patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...