Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
JAMA Netw Open ; 7(8): e2425124, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39106068

ABSTRACT

IMPORTANCE: Identifying pediatric eye diseases at an early stage is a worldwide issue. Traditional screening procedures depend on hospitals and ophthalmologists, which are expensive and time-consuming. Using artificial intelligence (AI) to assess children's eye conditions from mobile photographs could facilitate convenient and early identification of eye disorders in a home setting. OBJECTIVE: To develop an AI model to identify myopia, strabismus, and ptosis using mobile photographs. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study was conducted at the Department of Ophthalmology of Shanghai Ninth People's Hospital from October 1, 2022, to September 30, 2023, and included children who were diagnosed with myopia, strabismus, or ptosis. MAIN OUTCOMES AND MEASURES: A deep learning-based model was developed to identify myopia, strabismus, and ptosis. The performance of the model was assessed using sensitivity, specificity, accuracy, the area under the curve (AUC), positive predictive values (PPV), negative predictive values (NPV), positive likelihood ratios (P-LR), negative likelihood ratios (N-LR), and the F1-score. GradCAM++ was utilized to visually and analytically assess the impact of each region on the model. A sex subgroup analysis and an age subgroup analysis were performed to validate the model's generalizability. RESULTS: A total of 1419 images obtained from 476 patients (225 female [47.27%]; 299 [62.82%] aged between 6 and 12 years) were used to build the model. Among them, 946 monocular images were used to identify myopia and ptosis, and 473 binocular images were used to identify strabismus. The model demonstrated good sensitivity in detecting myopia (0.84 [95% CI, 0.82-0.87]), strabismus (0.73 [95% CI, 0.70-0.77]), and ptosis (0.85 [95% CI, 0.82-0.87]). The model showed comparable performance in identifying eye disorders in both female and male children during sex subgroup analysis. There were differences in identifying eye disorders among different age subgroups. CONCLUSIONS AND RELEVANCE: In this cross-sectional study, the AI model demonstrated strong performance in accurately identifying myopia, strabismus, and ptosis using only smartphone images. These results suggest that such a model could facilitate the early detection of pediatric eye diseases in a convenient manner at home.


Subject(s)
Artificial Intelligence , Early Diagnosis , Photography , Humans , Female , Male , Cross-Sectional Studies , Child , Child, Preschool , Photography/methods , Myopia/diagnosis , Deep Learning , Strabismus/diagnosis , Blepharoptosis/diagnosis , Sensitivity and Specificity , China/epidemiology , Eye Diseases/diagnosis , Adolescent
2.
Environ Int ; 190: 108938, 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39111171

ABSTRACT

Plant microbiota are an important factor impacting plant cadmium (Cd) uptake. However, little is known about how plant microbiota affects the Cd uptake by plants under the influence of microplastics (MPs) with different particle sizes. In this study, bacterial structure and assembly in the rhizosphere and endosphere in pakchoi were analyzed by amplicon sequencing of 16S rRNA genes under the influence of different particle sizes of polystyrene microplastics (PS-MPs) combined with Cd treatments. Results showed that there were no significant differences observed in the shoot endophytes among different treatments. However, compared to Cd treatment, larger-sized PS-MPs (2 and 20 µm) significantly increased community diversity and altered the structural composition of rhizosphere bacteria and root endophytes, while smaller-sized PS-MPs (0.2 µm) did not. Under the treatment of larger-sized PS-MPs, the niche breadth of rhizosphere bacteria and root endophytes were significantly increased. And larger-sized PS-MPs also maintained stability and complexity of bacterial co-occurrence networks, while smaller-sized PS-MPs reduced them. Furthermore, compared to Cd treatment, the addition of larger particle size PS-MPs decreased the proportion of homogeneous section, while increased the proportion of drift in root endophytic bacterial community assembly. The role of larger-sized MPs in the community assembly of rhizosphere bacteria was opposite. Using random forest and structural equation models, the study found that larger-sized PS-MPs can promote the colonization of specific bacterial taxa, such as Brevundimonas, AKAU4049, SWB02, Ellin6055, Porphyrobacter, Sphingorhabdus, Rhodobacter, Erythrobacter, Devosia and some other bacteria belonging to Alphaproteobacteria, in the rhizosphere and root endosphere. The colonization of these taxa can may induce the formation of biofilms in the roots, immobilize heavy metals through oxidation processes, and promote plant growth, thereby reducing Cd uptake by pakchoi. The findings of this study provide important insights into the microbial mechanisms underlying the influence of MPs with different particle sizes on plant Cd uptake.

3.
Animals (Basel) ; 14(15)2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39123688

ABSTRACT

We conducted an experiment of planting a dead cow and a metal-framed cage with cameras on the 1629 m deep sea floor off the southeast coast of Hainan Island in the northwestern South China Sea, using ROV diving and setting up a video camera on the cage to observe animals who came to eat the bait. The deep-sea cameras captured footage of eight Pacific sleeper sharks (Somniosus pacificus) swimming and feeding around the dead cow. To our knowledge, this is the first time the occurrence of such a shark species has been reported in the South China Sea. Eight individuals were differentiated based on the characteristic differences displayed in the images, with lengths of 1.9 to 5.1 m estimated. The video camera also recorded the predators' behavior of tearing at the dead cow on the seabed. It was discovered that Pacific sleeper sharks are not strictly solitary and exhibit queue-feeding behavior. This study is significant as it documents a record of a data-scarce shark species, for which little information is available in the literature. It also documents an expansion of the species' known habitat from the north Pacific Ocean into the South China Sea. Such sharks diving into the deep sea to predate on dead animals also suggests that occurrences of large chunks of dead organic bodies falling onto the deep sea might have been more frequent than we previously thought in the South China Sea. The findings have implications for understanding the geographic connectivity of large swimming animals between the South China Sea and the Pacific Ocean and provide scientific evidence for formulating conservation and management strategies for sharks and other large animals in the oceans.

4.
Small ; : e2403470, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109946

ABSTRACT

The realm of titanium coordination polymer research is still in its nascent stages and presents a formidable challenge in the field of coordination chemistry. In recent decades, the focus has predominantly been on manipulating titanium reactions in solution, resulting in the synthesis of ≈60 targeted compounds. Despite the limited number of documented instances, these materials showcase a diverse array of structures, encompassing 1D chains, 2D layers, and 3D frameworks. This suggests potential for fine-tuning coordination modes and structural features in future investigations. Moreover, titanium coordination polymers not only exhibit photo-active and photo-responsive properties but also hold promise for various other significant applications. This article offers an exhaustive review tracing the evolution of titanium coordination polymer development while providing an update on recent advancements. The review encompasses a synopsis of reported synthetic strategies, methodologies, structural diversity, and associated applications. Additionally, it delves into critical issues that necessitate attention for future progressions and proposes potential avenues to effectively propel this research field forward at an accelerated pace.

5.
Sci Total Environ ; 948: 174900, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39047842

ABSTRACT

Phthalate monoesters (mPAEs) possess biological activity that matches or even exceeds that of their parent compounds, phthalate esters (PAEs), negatively impacting humans. Indoor dust is the main carrier of indoor pollutants. In this study, indoor dust samples were collected from 46 households in Changchun City, Jilin Province, in May 2019, and particulate and flocculent fibrous dust was used as the research target to analyze the concentration and compositional characteristics of mPAEs, primary metabolites of five significant PAEs. The influence of factors such as architectural features and living habits in residential areas on exposure to mPAEs was explored. Ten suspected enzyme genes along with two metabolic pathways with the ability to degrade PAEs were screened using PICRUSt2. The results showed that the total concentrations of the five mPAEs in the indoor dust samples were particulate dust (11.49-78.69 µg/g) and flocculent fibrous dust (21.61-72.63 µg/g), respectively. The molar concentration ratio (RC) of mPAEs to corresponding PAEs significantly differed among chemicals, with MMP/DMP and MEP/DEP sporting the highest RC values. Different bacterial types have shown distinct influences against mPAEs and PAEs. Enzyme function and metabolic pathway abundance had a significant effect on the concentration of some mPAEs, mPAEs are most likely derived from microbial degradation of PAEs.


Subject(s)
Air Pollution, Indoor , Dust , Phthalic Acids , Phthalic Acids/analysis , Air Pollution, Indoor/analysis , Dust/analysis , Environmental Monitoring , Air Pollutants/analysis , Esters/analysis , China , Housing
6.
Environ Pollut ; 357: 124445, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936794

ABSTRACT

A novel adsorbent, calcium alginate-modified HAP (Hydroxyapatite)-wood ear mushroom sticks biochar (CA-HAPMB), was synthesized to enhance the immobilization of Cd and Pb in soil. Over 150 days, applying CA-HAPMB at concentrations of 0%-3% in contaminated soils from Chenzhou City in Hunan Province (CZ) and Shenyang City in Liaoning Province (SY) resulted in decreased effective concentrations of Cd and Pb. Specifically, in CZ soil, Cd and Pb decreased by 30.9%-69.3% and 31.9%-78.6%, respectively, while in SY soil, they decreased by 27.5%-53.7% and 26.4%-62.3%, respectively. Characterization results, obtained after separating CA-HAPMB from the soil, indicate that complexation, co-precipitation, and ion exchange play crucial roles in the efficient immobilization of Cd and Pb by CA-HAPMB. Additionally, adjusting the amount of CA-HAPMB added allows modulation of soil pH, leading to increased soil organic matter and nutrient content. Following treatment with CA-HAPMB for immobilizing Cd and Pb, soil bacteria abundance and diversity increased, further promoting heavy-metal immobilization.

7.
J Acoust Soc Am ; 155(5): 3380-3393, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38775635

ABSTRACT

An efficient and precise time-frequency analysis method for real-time ocean bottom seismometer (RTOBS) data in the South China Sea (SCS) is presented. Overcoming the limitations of conventional methods, the method involves temporal segmentation, unique frequency octaves, and Fourier transforms to generate power spectral density (PSD) and probability density function profiles. The method demonstrates superior precision, computational efficiency, and full-bandwidth (0 to Nyquist) capability compared to traditional techniques, as validated through theoretical and empirical evaluations. Applied to SCS RTOBS data, it unveils temporal PSD variations, shedding light on underwater noise sources like earthquakes, offshore blasting, ship-induced disturbances, and tidal effects. Establishing background noise levels in the SCS supports noise source categorization and ocean environment monitoring. Furthermore, comparing onshore and offshore seismic stations advances interdisciplinary research, fostering a comprehensive understanding of acoustics and seismology in the region.

8.
J Environ Manage ; 359: 120956, 2024 May.
Article in English | MEDLINE | ID: mdl-38669883

ABSTRACT

The interaction between cadmium(Cd) and copper(Cu) during combined pollution can lead to more complex toxic effects on humans and plants.However, there is still a lack of sufficient understanding regarding the types of interactions at the plant molecular level and the response strategies of plants to combined pollution. To assess this, we investigated the phenotypic and transcriptomic patterns of pakchoi (Brassica chinensis L) roots in response to individual and combined pollution of Cd and Cu. The results showed that compared to single addition, the translocation factor of heavy metals in roots significantly decreased (p < 0.05) under the combined addition, resulting in higher accumulation of Cd and Cu in the roots. Transcriptomic analysis of pakchoi roots revealed that compared to single pollution, there were 312 and 1926 differentially expressed genes (DEGs) specifically regulated in the Cd2Cu20 and Cd2Cu100 combined treatments, respectively. By comparing the expression of these DEGs among different treatments, we found that the combined pollution of Cd and Cu mainly affected the transcriptome of the roots in an antagonistic manner. Enrichment analysis indicated that pakchoi roots upregulated the expression of genes involved in glucosetransferase activity, phospholipid homeostasis, proton transport, and the biosynthesis of phenylpropanoids and flavonoids to resist Cd and Cu combined pollution. Using weighted gene co-expression network analysis (WGCNA), we identified hub genes related to the accumulation of Cd and Cu in the roots, which mainly belonged to the LBD, thaumatin-like protein, ERF, MYB, WRKY, and TCP transcription factor families. This may reflect a transcription factor-driven trade-off strategy between heavy metal accumulation and growth in pakchoi roots. Additionally, compared to single metal pollution, the expression of genes related to Nramp, cation/H+ antiporters, and some belonging to the ABC transporter family in the pakchoi roots was significantly upregulated under combined pollution. This could lead to increased accumulation of Cd and Cu in the roots. These findings provide new insights into the interactions and toxic mechanisms of multiple metal combined pollution at the molecular level in plants.


Subject(s)
Brassica , Cadmium , Copper , Plant Roots , Transcriptome , Cadmium/toxicity , Brassica/genetics , Brassica/drug effects , Brassica/metabolism , Copper/toxicity , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/genetics , Transcriptome/drug effects , Soil Pollutants/toxicity , Gene Expression Regulation, Plant/drug effects , Gene Regulatory Networks/drug effects
9.
Diabetes Care ; 47(6): 1092-1098, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38593324

ABSTRACT

OBJECTIVE: Whether genetic susceptibility to disease and dietary cholesterol (DC) absorption contribute to inconsistent associations of DC consumption with diabetes and cardiovascular disease (CVD) remains unclear. RESEARCH DESIGN AND METHODS: DC consumption was assessed by repeated 24-h dietary recalls in the UK Biobank. A polygenetic risk score (PRS) for DC absorption was constructed using genetic variants in the Niemann-Pick C1-Like 1 and ATP Binding Cassettes G5 and G8 genes. PRSs for diabetes, coronary artery disease, and stroke were also created. The associations of DC consumption with incident diabetes (n = 96,826) and CVD (n = 94,536) in the overall sample and by PRS subgroups were evaluated using adjusted Cox models. RESULTS: Each additional 300 mg/day of DC consumption was associated with incident diabetes (hazard ratio [HR], 1.17 [95% CI, 1.07-1.27]) and CVD (HR, 1.09 [95% CI, 1.03-1.17]), but further adjusting for BMI nullified these associations (HR for diabetes, 0.99 [95% CI, 0.90-1.09]; HR for CVD, 1.04 [95% CI, 0.98-1.12]). Genetic susceptibility to the diseases did not modify these associations (P for interaction ≥0.06). The DC-CVD association appeared to be stronger in people with greater genetic susceptibility to cholesterol absorption assessed by the non-high-density lipoprotein cholesterol-related PRS (P for interaction = 0.04), but the stratum-level association estimates were not statistically significant. CONCLUSIONS: DC consumption was not associated with incident diabetes and CVD, after adjusting for BMI, in the overall sample and in subgroups stratified by genetic predisposition to cholesterol absorption and the diseases. Nevertheless, whether genetic predisposition to cholesterol absorption modifies the DC-CVD association requires further investigation.


Subject(s)
Cardiovascular Diseases , Cholesterol, Dietary , Humans , Male , Female , Cardiovascular Diseases/genetics , Cardiovascular Diseases/epidemiology , Middle Aged , Cholesterol, Dietary/adverse effects , Cholesterol, Dietary/administration & dosage , Diabetes Mellitus/genetics , Diabetes Mellitus/epidemiology , Aged , Adult , Genetic Predisposition to Disease , ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics , Membrane Transport Proteins/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics
10.
Environ Geochem Health ; 46(1): 27, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38225481

ABSTRACT

Toxicity observed in aquatic ecosystems often cannot be explained by the action of a single pollutant. Likewise, evaluation standards formulated by a single effect cannot truly reflect the environmental quality requirements. The study of mixtures is needed to provide environmental relevance and knowledge of combined toxicity. In this study, the embryos of Japanese medaka (Oryzias latipes) were treated with individual and binary mixture of copper (Cu) and cadmium (Cd) until 12 days post-fertilization (dpf). Hatching, mortality, development, histology and gene expression were assessed. Our results showed that the highest concentration mixture of Cd (10 mg/L) and Cu (1 mg/L) affected survival, hatching time and hatching success. Occurrence of uninflated swim bladder was the highest (value) with exposure to 10 mg/L Cd. Swim bladder was commonly over-inflated in a mixture (0.1 mg/L Cd + 1.0 mg/L Cu) exposure. Individuals exposed to the mixture (0.1 Cd + 1.0 Cu mg/L) showed up to a 7.69% increase in swim bladder area compared to the control group. The mixtures containing 0.1 or 10 mg/L Cd, each with 1.0 mg/L Cu resulted in significantly increased of Pbx1b expression, higher than any Cd or Cu alone (p < 0.01). In the co-exposure group (0.1/10 Cd + 1.0 Cu mg/L), Pbx1b expression was found at 12 dpf but not 7 dpf in controls. Higher concentrations of Cd may progressively reduce Pbx1b expression, potentially explaining why 75% of individuals in the 10 mg/L Cd group failed to inflate their swim bladders. Additionally, the swim bladder proved to be a valuable bio-indicator for biological evaluation.


Subject(s)
Oryzias , Water Pollutants, Chemical , Humans , Animals , Copper/toxicity , Cadmium/toxicity , Ecosystem , Urinary Bladder , Water Pollutants, Chemical/toxicity , Embryo, Nonmammalian
11.
Environ Pollut ; 342: 123147, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38101532

ABSTRACT

China is the largest producer and consumer of phthalates in the world. However, it remains unclear whether China's phthalate restrictions have alleviated indoor phthalate pollution. We extracted the concentrations of dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), diisobutyl phthalate (DIBP), benzyl butyl phthalate (BBP), and bis(2-ethylhexyl) phthalate (DEHP) in indoor dust at 2762 sites throughout China between 2007 and 2019 from the published literature. Based on these data, we investigated the effects of phthalate restrictions and environmental factors on the temporal-spatial distribution and sources of phthalates and estimated human exposure and risk of phthalates. The results revealed that the mean concentrations of phthalates in indoor dust throughout China decreased in the following order: DEHP > DBP > DIBP > DMP > DEP > BBP. The concentrations of six phthalates were generally higher in northern and central-western China than in southern regions. BBP and DEHP concentrations decreased by 73.5% and 17.9%, respectively, from 2007 to 2019. Sunshine was a critical environmental factor in reducing phthalate levels in indoor dust. Polyvinyl chloride materials, personal care products, building materials, and furniture were the primary sources of phthalates in indoor dust. The phthalates in indoor dust posed the most significant threat to children and older adults. This study provides a picture of phthalate pollution, thus supporting timely and effective policies and legislation.


Subject(s)
Air Pollution, Indoor , Diethylhexyl Phthalate , Phthalic Acids , Child , Humans , Aged , Dust/analysis , Phthalic Acids/analysis , Environmental Exposure/analysis , China , Air Pollution, Indoor/analysis
12.
Sci Total Environ ; 913: 169701, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38159748

ABSTRACT

The endocrine disruptor phthalates (PAEs) are widely used as important chemical additives in a variety of areas around the globe. PAEs are toxic to reproduction and development and may adversely affect the health of adolescents. Risk assessments of exposure to PAEs from different sources are more reflective of actual exposure than single-source assessments. We used personal exposure parameters to estimate the dose of PAEs to 107 university students from six media (including dormitory dust, dormitory air, clothing, food, disposable food containers, and personal care products (PCPs)) and three exposure routes (including ingestion, inhalation, and dermal absorption). Individual factors and lifestyles may affect PAE exposure to varying degrees. Based on a positive matrix factorization (PMF) model, the results indicated that the main sources of PAEs in dust were indoor building materials and plastics, while PCPs and adhesives were the major sources of airborne PAEs. The relative contribution of each source to PAE exposure showed that food and air were the primary sources of dimethyl phthalate (DMP) and dibutyl phthalate (DBP). Air source contributed the most to diethyl phthalate (DEP) exposure, followed by PCPs. Food was the most significant source of diisobutyl phthalate (DiBP), benzyl butyl phthalate (BBP), and bis(2-ethylhexyl) phthalate (DEHP) exposure. Additionally, the exposure of DEHP to dust was not negligible. The ingestion pathway was the most dominant among the three exposure pathways, followed by dermal absorption. The non-carcinogenic risk of PAEs from the six sources was within acceptable limits. DEHP exhibits a low carcinogenic risk. We suggest university students maintain good hygienic and living habits to minimize exposure to PAEs.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Adolescent , Humans , Universities , Phthalic Acids/analysis , Dibutyl Phthalate , Dust/analysis , China , Esters/analysis , Students
13.
Sensors (Basel) ; 23(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37960457

ABSTRACT

This paper proposes a portable wireless transmission system for the multi-channel acquisition of surface electromyography (EMG) signals. Because EMG signals have great application value in psychotherapy and human-computer interaction, this system is designed to acquire reliable, real-time facial-muscle-movement signals. Electrodes placed on the surface of a facial-muscle source can inhibit facial-muscle movement due to weight, size, etc., and we propose to solve this problem by placing the electrodes at the periphery of the face to acquire the signals. The multi-channel approach allows this system to detect muscle activity in 16 regions simultaneously. Wireless transmission (Wi-Fi) technology is employed to increase the flexibility of portable applications. The sampling rate is 1 KHz and the resolution is 24 bit. To verify the reliability and practicality of this system, we carried out a comparison with a commercial device and achieved a correlation coefficient of more than 70% on the comparison metrics. Next, to test the system's utility, we placed 16 electrodes around the face for the recognition of five facial movements. Three classifiers, random forest, support vector machine (SVM) and backpropagation neural network (BPNN), were used for the recognition of the five facial movements, in which random forest proved to be practical by achieving a classification accuracy of 91.79%. It is also demonstrated that electrodes placed around the face can still achieve good recognition of facial movements, making the landing of wearable EMG signal-acquisition devices more feasible.


Subject(s)
Movement , Neural Networks, Computer , Humans , Reproducibility of Results , Electromyography , Movement/physiology , Muscles
14.
Ecotoxicol Environ Saf ; 267: 115635, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37897980

ABSTRACT

Parabens (PBs), a class of endocrine-disrupting chemicals (EDCs), are extensively used as additives in personal care products (PCPs); however, distinguishing between endogenous and exogenous contamination from PCPs in hair remains a challenge. We conducted a comprehensive analysis of the levels, distribution patterns, impact factors, and sources of PBs in 119 human hair samples collected from Changchun, northeast China. The detection rates of methylparaben (MeP), propylparaben (PrP), and ethylparaben (EtP) in hair samples were found to be 100%. The concentration of PBs in hair followed the order of MeP (57.48 ng/g) > PrP (46.40 ng/g) > EtP (6.80 ng/g). The concentration of PrP in female hair was significantly higher (65.38 ng/g) than that observed in male hair (7.82 ng/g) (p < 0.05). The levels of excretion rates of MeP (ERMeP) and excretion rates of PrP (ERPrP) in the hair-dying samples (ERMeP: 17.89 ng/day; ERPrP: 14.15 ng/day) were found to be 2.52 and 2.40 times higher, respectively, compared to the non-hair-dying samples (ERMeP: 7.09 ng/day; ERPrP: 6.05 ng/day). However, the system exposure dosage (SED) results revealed that although hair dyes exhibited higher PBs, human exposure was found to be lower than certain PCPs. The results of the correlation analysis revealed that toner, face cream, body lotion, and hair conditioner were identified as the primary sources of PBs in male hair. Furthermore, the human exposure resulting from the utilization of female hair dye and serum exhibited a positive correlation with hair ERMeP and ERPrP levels, indicating in the screening of samples, excluding hair samples using hair dye and haircare essential oil can effectively avoid the interference caused by exogenous contamination from PCPs.


Subject(s)
Hair Dyes , Parabens , Humans , Female , Male , Biological Monitoring , China , Hair
15.
Chemosphere ; 339: 139754, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37553043

ABSTRACT

Contaminants present in dust adhering to the skin can pose a significant risk to human health through dermal absorption and hand-to-mouth contact. The adhesion capacity of dust differs significantly from that of soil due to its physicochemical properties. Therefore, applying the raw soil exposure parameters to estimate the health risks associated with dermal exposure to dust may lead to erroneous conclusions. In this study, we quantified the maximum amount of dust that adhered to the skin (MADmax) and the upper limit of dust-skin adherence factor (DSAFmax) in 26 adults using element markers as a proxy for dust. The volunteers were exposed to dust and rinse water samples were collected from their hands, forearms, lower legs, and feet. We analyzed both the raw dust samples and the rinse water samples for 11 element markers, including Be, V, Cr, Mn, Co, Ni, Cu, Zn, Se, Ba, and Pb. The results showed that the MADmax of indoor dust and outdoor dust increased by 0.08-0.62 mg and 0.33-0.56 mg following a 1 cm2 increase in skin surface area, respectively. Based on best dust element markers, the body part-weighted dust-skin adherences (WDSAFmaxs) of indoor dust and outdoor dust were 0.35 and 0.64 mg/cm2, respectively. A smaller particle size and higher moisture content resulted in a larger DSAFmax. Only when indoor dust concentrations exceed 24.2 mg/m3 or outdoor dust concentrations exceed 44.3 mg/m3, can the WDSAFmax be applied directly in the health risk assessment of dermal exposure to dust. The method from this study can be re-applied in different regions, and the adherence data can help to improve future studies on the health effects of dermal exposure to dust.


Subject(s)
Dust , Metals, Heavy , Young Adult , Humans , Dust/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , China , Risk Assessment , Soil/chemistry , Water , Environmental Exposure/analysis
16.
Nat Commun ; 14(1): 4189, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37443163

ABSTRACT

Separating deuterium from hydrogen isotope mixtures is of vital importance to develop nuclear energy industry, as well as other isotope-related advanced technologies. As one of the most promising alternatives to conventional techniques for deuterium purification, kinetic quantum sieving using porous materials has shown a great potential to address this challenging objective. From the knowledge gained in this field; it becomes clear that a quantum sieve encompassing a wide range of practical features in addition to its separation performance is highly demanded to approach the industrial level. Here, the rational design of an ultra-microporous squarate pillared titanium oxide hybrid framework has been achieved, of which we report the comprehensive assessment towards practical deuterium separation. The material not only displays a good performance combining high selectivity and volumetric uptake, reversible adsorption-desorption cycles, and facile regeneration in adsorptive sieving of deuterium, but also features a cost-effective green scalable synthesis using chemical feedstock, and a good stability (thermal, chemical, mechanical and radiolytic) under various working conditions. Our findings provide an overall assessment of the material for hydrogen isotope purification and the results represent a step forward towards next generation practical materials for quantum sieving of important gas isotopes.


Subject(s)
Hydrogen , Deuterium , Adsorption , Biological Transport
17.
Org Biomol Chem ; 21(27): 5527-5531, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37350504

ABSTRACT

The stereoselective cyclization of geranylgeraniol catalysed by squalene-hopene cyclase (SHC) was investigated. By use of this transformation, spongiane diterpenoids (+)-isoagatholactone and (+)-spongian-16-one, and meroterpenoid 3-deoxychavalone A were synthesized in a concise and redox-economic manner. This work showcases the application of SHC-catalysed cyclization as a key step in terpenoid synthesis.

18.
J Environ Sci (China) ; 130: 1-13, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37032026

ABSTRACT

The production of face towels is growing at an annual rate of about 4% in China, reaching 1.13 million tons by 2021. Phthalates (PAEs) are widely used in textiles, and face towels, as an important household textile, may expose people to PAEs via the skin, further leading to health risks. We collected new face towels and analyzed the distribution characterization of PAEs in them. The changes of PAEs were explored in a face towel use experiment and a simulated laundry experiment. Based on the use of face towels by 24 volunteers, we calculated the estimated daily intake (EDI) and comprehensively assessed the hazard quotient (HQ), hazard index (HI), and dermal cancer risk (DCR) of PAEs exposure in the population. PAEs were present in new face towels at total concentrations of

Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Phthalic Acids/toxicity , China , Water , Esters
19.
Entropy (Basel) ; 25(3)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36981348

ABSTRACT

Micro-expression recognition (MER) is challenging due to the difficulty of capturing the instantaneous and subtle motion changes of micro-expressions (MEs). Early works based on hand-crafted features extracted from prior knowledge showed some promising results, but have recently been replaced by deep learning methods based on the attention mechanism. However, with limited ME sample sizes, features extracted by these methods lack discriminative ME representations, in yet-to-be improved MER performance. This paper proposes the Dual-branch Attention Network (Dual-ATME) for MER to address the problem of ineffective single-scale features representing MEs. Specifically, Dual-ATME consists of two components: Hand-crafted Attention Region Selection (HARS) and Automated Attention Region Selection (AARS). HARS uses prior knowledge to manually extract features from regions of interest (ROIs). Meanwhile, AARS is based on attention mechanisms and extracts hidden information from data automatically. Finally, through similarity comparison and feature fusion, the dual-scale features could be used to learn ME representations effectively. Experiments on spontaneous ME datasets (including CASME II, SAMM, SMIC) and their composite dataset, MEGC2019-CD, showed that Dual-ATME achieves better, or more competitive, performance than the state-of-the-art MER methods.

20.
Environ Pollut ; 317: 120812, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36473644

ABSTRACT

Although organophosphorus flame retardants (OPFRs) in aquatic environments have received increasing concern, little information is available on their bioaccumulation and trophic transfer in marine food webs. Consequently, the risks of OPFRs to marine ecosystems are unknown. In this study, seven OPFR compounds in marine biological samples collected from Liaodong Bay, Bohai Sea, were analyzed to evaluate their level and biological amplification effect in the marine food web. The total OPFRs of marine organisms in Liaodong Bay ranged from 2.60 to 776 ng/g ww, and lipids were critical factors affecting the concentration of OPFRs in marine species. Tris (2-ethylhexyl) phosphate (TEHP) and tris(1-chloro-2-propyl) phosphate (TCIPP) were the OPFRs most frequently detected in marine species. Still, tris(2-chloroethyl) phosphate (TCEP) was dominant in most marine species (16/24), and the content of chlorinated OPFRs was highest. At the same time, alkyl OPFRs and aryl OPFRs accounted for the same proportion. No correlation between OPFR concentration and the trophic level was observed in marine organisms from Liaodong Bay. It was shown in the results of the species sensitivity distribution that TCIPP in Chinese seawater does not pose a potential ecological risk to marine species. However, much work remains to be done on accumulating information and the ecological risks of OPFRs in different marine food webs.


Subject(s)
Flame Retardants , Organophosphorus Compounds , Organophosphorus Compounds/analysis , Aquatic Organisms , Flame Retardants/analysis , Bioaccumulation , Ecosystem , Bays , Organophosphates , Phosphates
SELECTION OF CITATIONS
SEARCH DETAIL