Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
Plant Methods ; 20(1): 15, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287423

ABSTRACT

The number of seedlings is an important indicator that reflects the size of the wheat population during the seedling stage. Researchers increasingly use deep learning to detect and count wheat seedlings from unmanned aerial vehicle (UAV) images. However, due to the small size and diverse postures of wheat seedlings, it can be challenging to estimate their numbers accurately during the seedling stage. In most related works in wheat seedling detection, they label the whole plant, often resulting in a higher proportion of soil background within the annotated bounding boxes. This imbalance between wheat seedlings and soil background in the annotated bounding boxes decreases the detection performance. This study proposes a wheat seedling detection method based on a local annotation instead of a global annotation. Moreover, the detection model is also improved by replacing convolutional and pooling layers with the Space-to-depth Conv module and adding a micro-scale detection layer in the YOLOv5 head network to better extract small-scale features in these small annotation boxes. The optimization of the detection model can reduce the number of error detections caused by leaf occlusion between wheat seedlings and the small size of wheat seedlings. The results show that the proposed method achieves a detection accuracy of 90.1%, outperforming other state-of-the-art detection methods. The proposed method provides a reference for future wheat seedling detection and yield prediction.

2.
Nat Commun ; 14(1): 7357, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37963889

ABSTRACT

Fibrosis is the progressive accumulation of excess extracellular matrix and can cause organ failure. Fibrosis can affect nearly every organ including kidney and there is no specific treatment currently. Although Epidermal Growth Factor Receptor (EGFR) signaling pathway has been implicated in development of kidney fibrosis, underlying mechanisms by which EGFR itself mediates kidney fibrosis have not been elucidated. We find that EGFR expression increases in interstitial myofibroblasts in human and mouse fibrotic kidneys. Selective EGFR deletion in the fibroblast/pericyte population inhibits interstitial fibrosis in response to unilateral ureteral obstruction, ischemia or nephrotoxins. In vivo and in vitro studies and single-nucleus RNA sequencing analysis demonstrate that EGFR activation does not induce myofibroblast transformation but is necessary for the initial pericyte/fibroblast migration and proliferation prior to subsequent myofibroblast transformation by TGF-ß or other profibrotic factors. These findings may also provide insight into development of fibrosis in other organs and in other conditions.


Subject(s)
Kidney Diseases , Ureteral Obstruction , Animals , Humans , Mice , ErbB Receptors/genetics , ErbB Receptors/metabolism , Fibrosis , Kidney/metabolism , Kidney Diseases/metabolism , Myofibroblasts/metabolism , Signal Transduction/physiology , Ureteral Obstruction/metabolism
3.
Plant Phenomics ; 5: 0109, 2023.
Article in English | MEDLINE | ID: mdl-37915995

ABSTRACT

Accurate wheat spike detection is crucial in wheat field phenotyping for precision farming. Advances in artificial intelligence have enabled deep learning models to improve the accuracy of detecting wheat spikes. However, wheat growth is a dynamic process characterized by important changes in the color feature of wheat spikes and the background. Existing models for wheat spike detection are typically designed for a specific growth stage. Their adaptability to other growth stages or field scenes is limited. Such models cannot detect wheat spikes accurately caused by the difference in color, size, and morphological features between growth stages. This paper proposes WheatNet to detect small and oriented wheat spikes from the filling to the maturity stage. WheatNet constructs a Transform Network to reduce the effect of differences in the color features of spikes at the filling and maturity stages on detection accuracy. Moreover, a Detection Network is designed to improve wheat spike detection capability. A Circle Smooth Label is proposed to classify wheat spike angles in drone imagery. A new micro-scale detection layer is added to the network to extract the features of small spikes. Localization loss is improved by Complete Intersection over Union to reduce the impact of the background. The results show that WheatNet can achieve greater accuracy than classical detection methods. The detection accuracy with average precision of spike detection at the filling stage is 90.1%, while it is 88.6% at the maturity stage. It suggests that WheatNet is a promising tool for detection of wheat spikes.

4.
J Mater Chem B ; 11(35): 8302-8314, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37464922

ABSTRACT

The miniaturization of traditional silicon-based electronics will soon reach its limitation as quantum tunneling and heat become serious problems at the several-nanometer scale. Crafting integrated circuits via self-assembly of electronically active molecules using a "bottom-up" paradigm provides a potential solution to these technological challenges. In particular, integrated biomolecular circuits (IbC) offer promising advantages to achieve this goal, as nature offers countless examples of functionalities entailed by self-assembly and examples of controlling charge transport at the molecular level within the self-assembled structures. To this end, the review summarizes the progress in understanding how charge transport is regulated in biosystems and the key redox-active amino acids that enable the charge transport. In addition, charge transport mechanisms at different length scales are also reviewed, offering key insights for controlling charge transport in IbC in the future.


Subject(s)
Electronics
5.
Plant Methods ; 19(1): 46, 2023 May 13.
Article in English | MEDLINE | ID: mdl-37179312

ABSTRACT

BACKGROUND: Detecting and counting wheat spikes is essential for predicting and measuring wheat yield. However, current wheat spike detection researches often directly apply the new network structure. There are few studies that can combine the prior knowledge of wheat spike size characteristics to design a suitable wheat spike detection model. It remains unclear whether the complex detection layers of the network play their intended role. RESULTS: This study proposes an interpretive analysis method for quantitatively evaluating the role of three-scale detection layers in a deep learning-based wheat spike detection model. The attention scores in each detection layer of the YOLOv5 network are calculated using the Gradient-weighted Class Activation Mapping (Grad-CAM) algorithm, which compares the prior labeled wheat spike bounding boxes with the attention areas of the network. By refining the multi-scale detection layers using the attention scores, a better wheat spike detection network is obtained. The experiments on the Global Wheat Head Detection (GWHD) dataset show that the large-scale detection layer performs poorly, while the medium-scale detection layer performs best among the three-scale detection layers. Consequently, the large-scale detection layer is removed, a micro-scale detection layer is added, and the feature extraction ability in the medium-scale detection layer is enhanced. The refined model increases the detection accuracy and reduces the network complexity by decreasing the network parameters. CONCLUSION: The proposed interpretive analysis method to evaluate the contribution of different detection layers in the wheat spike detection network and provide a correct network improvement scheme. The findings of this study will offer a useful reference for future applications of deep network refinement in this field.

8.
Cell Rep ; 41(12): 111840, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36543132

ABSTRACT

Inadequate potassium (K+) consumption correlates with increased mortality and poor cardiovascular outcomes. Potassium effects on blood pressure have been described previously; however, whether or not low K+ independently affects kidney disease progression remains unclear. Here, we demonstrate that dietary K+ deficiency causes direct kidney injury. Effects depend on reduced blood K+ and are kidney specific. In response to reduced K+, the channel Kir4.2 mediates altered proximal tubule (PT) basolateral K+ flux, causing intracellular acidosis and activation of the enzyme glutaminase and the ammoniagenesis pathway. Deletion of either Kir4.2 or glutaminase protects from low-K+ injury. Reduced K+ also mediates injury and fibrosis in a model of aldosteronism. These results demonstrate that the PT epithelium, like the distal nephron, is K+ sensitive, with reduced blood K+ causing direct PT injury. Kir4.2 and glutaminase are essential mediators of this injury process, and we identify their potential for future targeting in the treatment of chronic kidney disease.


Subject(s)
Potassium Channels, Inwardly Rectifying , Potassium , Potassium/metabolism , Glutaminase/genetics , Glutaminase/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Kidney/metabolism , Nephrons/metabolism
9.
Nat Commun ; 13(1): 4684, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35948530

ABSTRACT

Obesity and obesity-related health complications are increasing in prevalence. Adipose tissue from obese subjects has low-grade, chronic inflammation, leading to insulin resistance. Adipose tissue macrophages (ATMs) are a source of proinflammatory cytokines that further aggravate adipocyte dysfunction. In response to a high fat diet (HFD), ATM numbers initially increase by proliferation of resident macrophages, but subsequent increases also result from infiltration in response to chemotactic signals from inflamed adipose tissue. To elucidate the underlying mechanisms regulating the increases in ATMs and their proinflammatory phenotype, we investigated the role of activation of ATM epidermal growth factor receptor (EGFR). A high fat diet increased expression of EGFR and its ligand amphiregulin in ATMs. Selective deletion of EGFR in ATMs inhibited both resident ATM proliferation and monocyte infiltration into adipose tissue and decreased obesity and development of insulin resistance. Therefore, ATM EGFR activation plays an important role in adipose tissue dysfunction.


Subject(s)
Insulin Resistance , Adipose Tissue/metabolism , Animals , Diet, High-Fat/adverse effects , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Inflammation/metabolism , Insulin Resistance/genetics , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Obesity/metabolism
10.
J Clin Invest ; 132(9)2022 05 02.
Article in English | MEDLINE | ID: mdl-35499079

ABSTRACT

Obesity-associated complications are causing increasing morbidity and mortality worldwide. Expansion of adipose tissue in obesity leads to a state of low-grade chronic inflammation and dysregulated metabolism, resulting in insulin resistance and metabolic syndrome. Adipose tissue macrophages (ATMs) accumulate in obesity and are a source of proinflammatory cytokines that further aggravate adipocyte dysfunction. Macrophages are rich sources of cyclooxygenase (COX), the rate limiting enzyme for prostaglandin E2 (PGE2) production. When mice were fed a high-fat diet (HFD), ATMs increased expression of COX-2. Selective myeloid cell COX-2 deletion resulted in increased monocyte recruitment and proliferation of ATMs, leading to increased proinflammatory ATMs with decreased phagocytic ability. There were increased weight gain and adiposity, decreased peripheral insulin sensitivity and glucose utilization, increased adipose tissue inflammation and fibrosis, and abnormal adipose tissue angiogenesis. HFD pair-feeding led to similar increases in body weight, but mice with selective myeloid cell COX-2 still exhibited decreased peripheral insulin sensitivity and glucose utilization. Selective myeloid deletion of the macrophage PGE2 receptor subtype, EP4, produced a similar phenotype, and a selective EP4 agonist ameliorated the metabolic abnormalities seen with ATM COX-2 deletion. Therefore, these studies demonstrated that an ATM COX-2/PGE2/EP4 axis plays an important role in inhibiting adipose tissue dysfunction.


Subject(s)
Cyclooxygenase 2/metabolism , Insulin Resistance , Adipose Tissue/metabolism , Animals , Cyclooxygenase 2/genetics , Dinoprostone/genetics , Dinoprostone/metabolism , Glucose/metabolism , Inflammation/metabolism , Insulin Resistance/physiology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism
11.
JCI Insight ; 7(4)2022 02 22.
Article in English | MEDLINE | ID: mdl-35025763

ABSTRACT

Aristolochic acid (AA) is the causative nephrotoxic alkaloid in AA nephropathy, which results in a tubulointerstitial fibrosis. AA causes direct proximal tubule damage as well as an influx of macrophages, although the role of macrophages in pathogenesis is poorly understood. Here, we demonstrate that AA directly stimulates migration, inflammation, and ROS production in macrophages ex vivo. Cells lacking interferon regulatory factor 4 (IRF4), a known regulator of macrophage migration and phenotype, had a reduced migratory response, though effects on ROS production and inflammation were preserved or increased relative to WT cells. Macrophage-specific IRF4-knockout mice were protected from both acute and chronic kidney effects of AA administration based on functional and histological analysis. Renal macrophages from kidneys of AA-treated macrophage-specific IRF4-knockout mice demonstrated increased apoptosis and ROS production compared with WT controls, indicating that AA directly polarizes macrophages to a promigratory and proinflammatory phenotype. However, knockout mice had reduced renal macrophage abundance following AA administration. While macrophages lacking IRF4 can adopt a proinflammatory phenotype upon AA exposure, their inability to migrate to the kidney and increased rates of apoptosis upon infiltration provide protection from AA in vivo. These results provide evidence of direct AA effects on macrophages in AA nephropathy and add to the growing body of evidence that supports a key role of IRF4 in modulating macrophage function in kidney injury.


Subject(s)
Apoptosis , DNA/genetics , Interferon Regulatory Factors/genetics , Kidney Tubules, Proximal/metabolism , Macrophages/metabolism , Mutation , Renal Insufficiency, Chronic/genetics , Animals , Aristolochic Acids/toxicity , Cells, Cultured , DNA Mutational Analysis , Disease Models, Animal , Fibrosis/genetics , Fibrosis/metabolism , Fibrosis/pathology , Gene Deletion , Interferon Regulatory Factors/metabolism , Kidney Tubules, Proximal/pathology , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/pathology
12.
Kidney Int ; 101(1): 79-91, 2022 01.
Article in English | MEDLINE | ID: mdl-34774558

ABSTRACT

Following acute injury to the kidney, macrophages play an important role in recovery of functional and structural integrity, but organ fibrosis and progressive functional decline occur with incomplete recovery. Pro-resolving macrophages are characterized by increased cyclooxygenase 2 (COX-2) expression and this expression was selectively increased in kidney macrophages following injury and myeloid-specific COX-2 deletion inhibited recovery. Deletion of the myeloid prostaglandin E2 (PGE2) receptor, E-type prostanoid receptor 4 (EP4), mimicked effects seen with myeloid COX-2-/- deletion. PGE2-mediated EP4 activation induced expression of the transcription factor MafB in kidney macrophages, which upregulated anti-inflammatory genes and suppressed pro-inflammatory genes. Myeloid Mafb deletion recapitulated the effects seen with either myeloid COX-2 or EP4 deletion following acute kidney injury, with delayed recovery, persistent presence of pro-inflammatory kidney macrophages, and increased kidney fibrosis. Thus, our studies identified a previously unknown mechanism by which prostaglandins modulate macrophage phenotype following acute organ injury and provide new insight into mechanisms underlying detrimental kidney effects of non-steroidal anti-inflammatory drugs that inhibit cyclooxygenase activity.


Subject(s)
Acute Kidney Injury , Receptors, Prostaglandin E, EP4 Subtype , Acute Kidney Injury/genetics , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Humans , MafB Transcription Factor , Prostaglandins , Receptors, Prostaglandin E, EP4 Subtype/genetics , Receptors, Prostaglandin E, EP4 Subtype/metabolism
13.
Diabetes ; 70(10): 2377-2390, 2021 10.
Article in English | MEDLINE | ID: mdl-34233930

ABSTRACT

Podocyte injury is important in development of diabetic nephropathy (DN). Although several studies have reported single-cell-based RNA sequencing (RNA-seq) of podocytes in type 1 DN (T1DN), the podocyte translating mRNA profile in type 2 DN (T2DN) has not previously been compared with that of T1DN. We analyzed the podocyte translatome in T2DN in podocin-Cre; Rosa26fsTRAP; eNOS-/-; db/db mice and compared it with that of streptozotocin-induced T1DN in podocin-Cre; Rosa26fsTRAP; eNOS-/- mice using translating ribosome affinity purification (TRAP) and RNA-seq. More than 125 genes were highly enriched in the podocyte ribosome. More podocyte TRAP genes were differentially expressed in T2DN than in T1DN. TGF-ß signaling pathway genes were upregulated, while MAPK pathway genes were downregulated only in T2DN, while ATP binding and cAMP-mediated signaling genes were downregulated only in T1DN. Genes regulating actin filament organization and apoptosis increased, while genes regulating VEGFR signaling and glomerular basement membrane components decreased in both type 1 and type 2 diabetic podocytes. A number of diabetes-induced genes not previously linked to podocyte injury were confirmed in both mouse and human DN. On the basis of differences and similarities in the podocyte translatome in T2DN and T1DN, investigators can identify factors underlying the pathophysiology of DN and novel therapeutic targets to treat diabetes-induced podocyte injury.


Subject(s)
Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Podocytes/metabolism , Animals , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetic Nephropathies/pathology , Gene Expression Profiling , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Specificity/genetics , Podocytes/pathology , Protein Biosynthesis/genetics , Proteome/analysis , Proteome/genetics , Proteome/metabolism , RNA, Messenger/analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Seq , Sequence Analysis, RNA , Streptozocin , Transcriptome
14.
J Integr Neurosci ; 20(1): 131-136, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33834700

ABSTRACT

The neutral tone is a unique tone form in Mandarin as it distinguishes from four canonical tones or full tones on the one hand and integrates phonetic, morphological, syntactical and prosodic information on the other hand. Research to date has been focusing on its unique and variant acoustic features. However, little is known about how native Mandarin speakers process such a unique tone. In the present study, the mismatch negativity was used to explore the comparison-based pre-attentive change detection of Mandarin neutral tone. The mismatch negativity at the time window of 400-800 ms post-first-tone onset was obtained by subtracting event-related potentials to standard neutral tone from event-related potentials to a deviant natural tone. The source analysis of mismatch negativity showed the cortex generator was located at the left temporal lobe. The data suggest that Chinese native speakers process neutral tone automatically under non-attentional conditions, as revealed by the mismatch negativity data aligned with a neutral tone, and that neutral tone does exist as an automatically recognizable one in native Mandarin speakers' tone system.


Subject(s)
Cerebral Cortex/physiology , Evoked Potentials/physiology , Speech Acoustics , Speech Perception/physiology , Adult , China , Electroencephalography , Evoked Potentials, Auditory/physiology , Female , Humans , Male , Young Adult
15.
J Am Soc Nephrol ; 32(5): 1037-1052, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33619052

ABSTRACT

BACKGROUND: AKI is characterized by abrupt and reversible kidney dysfunction, and incomplete recovery leads to chronic kidney injury. Previous studies by us and others have indicated that macrophage infiltration and polarization play key roles in recovery from AKI. The role in AKI recovery played by IFN regulatory factor 4 (IRF4), a mediator of polarization of macrophages to the M2 phenotype, is unclear. METHODS: We used mice with myeloid or macrophage cell-specific deletion of Irf4 (MΦ Irf4-/- ) to evaluate Irf4's role in renal macrophage polarization and development of fibrosis after severe AKI. RESULTS: Surprisingly, although macrophage Irf4 deletion had a minimal effect on early renal functional recovery from AKI, it resulted in decreased renal fibrosis 4 weeks after severe AKI, in association with less-activated macrophages. Macrophage Irf4 deletion also protected against renal fibrosis in unilateral ureteral obstruction. Bone marrow-derived monocytes (BMDMs) from MΦ Irf4-/- mice had diminished chemotactic responses to macrophage chemoattractants, with decreased activation of AKT and PI3 kinase and increased PTEN expression. PI3K and AKT inhibitors markedly decreased chemotaxis in wild-type BMDMs, and in a cultured macrophage cell line. There was significant inhibition of homing of labeled Irf4-/- BMDMs to postischemic kidneys. Renal macrophage infiltration in response to AKI was markedly decreased in MΦ Irf4-/- mice or in wild-type mice with inhibition of AKT activity. CONCLUSIONS: Deletion of Irf4 from myeloid cells protected against development of tubulointerstitial fibrosis after severe ischemic renal injury in mice, due primarily to inhibition of AKT-mediated monocyte recruitment to the injured kidney and reduced activation and subsequent polarization into a profibrotic M2 phenotype.


Subject(s)
Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Interferon Regulatory Factors/physiology , Macrophage Activation/physiology , Myeloid Cells/metabolism , Reperfusion Injury/complications , Acute Kidney Injury/metabolism , Animals , Disease Models, Animal , Fibrosis , Male , Mice , Mice, Inbred C57BL , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
16.
Am J Physiol Renal Physiol ; 320(4): F569-F577, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33522414

ABSTRACT

Ischemic heart disease is the leading cause of death worldwide and is frequently comorbid with chronic kidney disease. Physiological communication is known to occur between the heart and the kidney. Although primary dysfunction in either organ can induce dysfunction in the other, a clinical entity known as cardiorenal syndrome, mechanistic details are lacking. Here, we used a model of experimental myocardial infarction (MI) to test effects of chronic cardiac ischemia on acute and chronic kidney injury. Surprisingly, chronic cardiac damage protected animals from subsequent acute ischemic renal injury, an effect that was accompanied by evidence of chronic kidney hypoxia. The protection observed post-MI was similar to protection observed in a separate group of healthy animals housed in ambient hypoxic conditions prior to kidney injury, suggesting a common mechanism. There was evidence that chronic cardiac injury activates renal hypoxia-sensing pathways. Increased renal abundance of several glycolytic enzymes following MI suggested that a shift toward glycolysis may confer renal ischemic preconditioning. In contrast, effects on chronic renal injury followed a different pattern, with post-MI animals displaying worsened chronic renal injury and fibrosis. These data show that although chronic cardiac injury following MI protected against acute kidney injury via activation of hypoxia-sensing pathways, it worsened chronic kidney injury. The results further our understanding of cardiorenal signaling mechanisms and have implications for the treatment of heart failure patients with associated renal disease.NEW & NOTEWORTHY Experimental myocardial infarction (MI) protects from subsequent ischemic acute kidney injury but worsens chronic kidney injury. Observed protection from ischemic acute kidney injury after MI was accompanied by chronic kidney hypoxia and increased renal abundance of hypoxia-inducible transcripts. These data support the idea that MI confers protection from renal ischemic injury via chronic renal hypoxia and activation of downstream hypoxia-inducible signaling pathways.


Subject(s)
Acute Kidney Injury/metabolism , Cardio-Renal Syndrome/complications , Hypoxia/metabolism , Ischemic Preconditioning , Myocardial Infarction/complications , Acute Kidney Injury/complications , Acute Kidney Injury/pathology , Animals , Cardio-Renal Syndrome/physiopathology , Heart/physiopathology , Heart Failure/metabolism , Kidney/metabolism , Myocardial Infarction/metabolism , Myocardium/pathology , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/metabolism
17.
Diabetes ; 70(2): 562-576, 2021 02.
Article in English | MEDLINE | ID: mdl-33239448

ABSTRACT

Renal epidermal growth factor receptor (EGFR) signaling is activated in models of diabetic nephropathy (DN), and inhibition of the EGFR signaling pathway protects against the development of DN. We have now determined that in cultured podocytes, high glucose led to increases in activation of EGFR signaling but decreases in autophagy activity as indicated by decreased beclin-1 and inhibition of LC3B autophagosome formation as well as increased rubicon (an autophagy inhibitor) and SQSTM1 (autophagy substrate). Either genetic (small interfering [si]EGFR) or pharmacologic (AG1478) inhibition of EGFR signaling attenuated the decreased autophagy activity. In addition, rubicon siRNA knockdown prevented high glucose-induced inhibition of autophagy in podocytes. We further examined whether selective EGFR deletion in podocytes affected the progression of DN in type 2 diabetes. Selective podocyte EGFR deletion had no effect on body weight or fasting blood sugars in either db/db mice or nos3 -/-; db/db mice, a model of accelerated type 2 DN. However selective podocyte EGFR deletion led to relative podocyte preservation and marked reduction in albuminuria and glomerulosclerosis, renal proinflammatory cytokine/chemokine expression, and decreased profibrotic and fibrotic components in nos3 -/-; db/db mice. Podocyte EGFR deletion led to decreased podocyte expression of rubicon, in association with increased podocyte autophagy activity. Therefore, activation of EGFR signaling in podocytes contributes to progression of DN at least in part by increasing rubicon expression, leading to subsequent autophagy inhibition and podocyte injury.


Subject(s)
Autophagy/physiology , Diabetes Mellitus, Type 2/metabolism , Diabetic Nephropathies/metabolism , ErbB Receptors/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Podocytes/metabolism , Up-Regulation , Animals , Cell Line , Gene Knockdown Techniques , Kidney/metabolism , Kidney Glomerulus/metabolism , Mice , Mice, Knockout , Signal Transduction
18.
Magn Reson Med ; 84(4): 2074-2087, 2020 10.
Article in English | MEDLINE | ID: mdl-32141646

ABSTRACT

PURPOSE: To develop and evaluate a reliable non-invasive means for assessing the severity and progression of fibrosis in kidneys. We used spin-lock MR imaging with different locking fields to detect and characterize progressive renal fibrosis in an hHB-EGFTg/Tg mouse model. METHODS: Male hHB-EGFTg/Tg mice, a well-established model of progressive fibrosis, and age-matched normal wild type (WT) mice, were imaged at 7T at ages 5-7, 11-13, and 30-40 weeks. Spin-lock relaxation rates R1ρ were measured at different locking fields (frequencies) and the resultant dispersion curves were fit to a model of exchanging water pools. The obtained MRI parameters were evaluated as potential indicators of tubulointerstitial fibrosis in kidney. Histological examinations of renal fibrosis were also carried out post-mortem after MRI. RESULTS: Histology detected extensive fibrosis in the hHB-EGFTg/Tg mice, in which collagen deposition and reductions in capillary density were observed in the fibrotic regions of kidneys. R2 and R1ρ values at different spin-lock powers clearly dropped in the fibrotic region as fibrosis progressed. There was less variation in the asymptotic locking field relaxation rate R1ρ∞ between the groups. The exchange parameter Sρ and the inflection frequency ωinfl changed by larger factors. CONCLUSION: Both Sρ and ωinfl depend primarily on the average exchange rate between water and other chemically shifted resonances such as hydroxyls and amides. Spin-lock relaxation rate dispersion, rather than single measurements of relaxation rates, provides more comprehensive and specific information on spatiotemporal changes associated with tubulointerstitial fibrosis in murine kidney.


Subject(s)
Kidney , Magnetic Resonance Imaging , Amides , Animals , Disease Models, Animal , Fibrosis , Kidney/diagnostic imaging , Male , Mice
19.
NMR Biomed ; 32(11): e4128, 2019 11.
Article in English | MEDLINE | ID: mdl-31355979

ABSTRACT

Excessive tissue scarring, or fibrosis, is a critical contributor to end stage renal disease, but current clinical tests are not sufficient for assessing renal fibrosis. Quantitative magnetization transfer (qMT) MRI provides indirect information about the macromolecular composition of tissues. We evaluated measurements of the pool size ratio (PSR, the ratio of immobilized macromolecular to free water protons) obtained by qMT as a biomarker of tubulointerstitial fibrosis in a well-established murine model with progressive renal disease. MR images were acquired from 16-week-old fibrotic hHB-EGFTg/Tg mice and normal wild-type (WT) mice (N = 12) at 7 T. QMT parameters were derived using a two-pool five-parameter fitting model. A normal range of PSR values in the cortex and outer stripe of outer medulla (CR + OSOM) was determined by averaging across voxels within WT kidneys (mean ± 2SD). Regions in diseased mice whose PSR values exceeded the normal range above a threshold value (tPSR) were identified and measured. The spatial distribution of fibrosis was confirmed using picrosirius red stains. Compared with normal WT mice, scattered clusters of high PSR regions were observed in the OSOM of hHB-EGFTg/Tg mouse kidneys. Moderate increases in mean PSR (mPSR) of CR + OSOM regions were observed across fibrotic kidneys. The abnormally high PSR regions (% area) detected by the tPSR were significantly increased in hHB-EGFTg/Tg mice, and were highly correlated with regions of fibrosis detected by histological fibrosis indices measured from picrosirius red staining. Renal tubulointerstitial fibrosis in OSOM can thus be assessed by qMT MRI using an appropriate analysis of PSR. This technique may be used as an imaging biomarker for chronic kidney diseases.


Subject(s)
Kidney Tubules/diagnostic imaging , Kidney Tubules/pathology , Magnetic Resonance Imaging , Animals , Fibrosis , Heparin-binding EGF-like Growth Factor/metabolism , Humans , Kidney Medulla/diagnostic imaging , Kidney Medulla/pathology , Male , Mice, Inbred C57BL , ROC Curve
20.
J Am Soc Nephrol ; 30(9): 1659-1673, 2019 09.
Article in English | MEDLINE | ID: mdl-31292196

ABSTRACT

BACKGROUND: Sex differences mediating predisposition to kidney injury are well known, with evidence indicating lower CKD incidence rates and slower decline in renal function in nondiabetic CKD for premenopausal women compared with men. However, signaling pathways involved have not been elucidated to date. The EGF receptor (EGFR) is widely expressed in the kidney in glomeruli and tubules, and persistent and dysregulated EGFR activation mediates progressive renal injury. METHODS: To investigate the sex differences in response to renal injury, we examined EGFR expression in mice, in human kidney tissue, and in cultured cell lines. RESULTS: In wild type mice, renal mRNA and protein EGFR levels were comparable in males and females at postnatal day 7 but were significantly lower in age-matched adult females than in adult males. Similar gender differences in renal EGFR expression were detected in normal adult human kidneys. In Dsk5 mutant mice with a gain-of-function allele that increases basal EGFR kinase activity, males had progressive glomerulopathy, albuminuria, loss of podocytes, and tubulointerstitial fibrosis, but female Dsk5 mice had minimal kidney injury. Oophorectomy had no effect on renal EGFR levels in female Dsk5 mice, while castration protected against the kidney injury in male Dsk5 mice, in association with a reduction in EGFR expression to levels seen in females. Conversely, testosterone increased EGFR expression and renal injury in female Dsk5 mice. Testosterone directly stimulated EGFR expression in cultured kidney cells. CONCLUSIONS: These studies indicate that differential renal EGFR expression plays a role in the sex differences in susceptibility to progressive kidney injury that may be mediated at least in part by testosterone.


Subject(s)
ErbB Receptors/genetics , ErbB Receptors/metabolism , Kidney/metabolism , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Age Factors , Alleles , Animals , Castration , Cell Line , Erlotinib Hydrochloride/pharmacology , Female , Gain of Function Mutation , Humans , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Ovariectomy , Podocytes , Protein Kinase Inhibitors/pharmacology , RNA, Messenger/metabolism , Renal Insufficiency, Chronic/metabolism , Sex Factors , Testosterone/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL