Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pain ; 164(11): 2447-2462, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37326662

ABSTRACT

ABSTRACT: Patients with chronic pain often experience exaggerated pain response and aversive emotion, such as anxiety and depression. Central plasticity in the anterior cingulate cortex (ACC) is assumed to be a critical interface for pain perception and emotion, which has been reported to involve activation of NMDA receptors. Numerous studies have documented the key significance of cGMP-dependent protein kinase I (PKG-I) as a crucial downstream target for the NMDA receptor-NO-cGMP signaling cascade in regulating neuronal plasticity and pain hypersensitivity in specific regions of pain pathway, ie, dorsal root ganglion or spinal dorsal horn. Despite this, whether and how PKG-I in the ACC contributes to cingulate plasticity and comorbidity of chronic pain and aversive emotion has remained elusive. Here, we uncovered a crucial role of cingulate PKG-I in chronic pain and comorbid anxiety and depression. Chronic pain caused by tissue inflammation or nerve injury led to upregulation of PKG-I expression at both mRNA and protein levels in the ACC. Knockdown of ACC-PKG-I relieved pain hypersensitivity as well as pain-associated anxiety and depression. Further mechanistic analysis revealed that PKG-I might act to phosphorylate TRPC3 and TRPC6, leading to enhancement of calcium influx and neuronal hyperexcitability as well as synaptic potentiation, which results in the exaggerated pain response and comorbid anxiety and depression. We believe this study sheds new light on the functional capability of ACC-PKG-I in modulating chronic pain as well as pain-associated anxiety and depression. Hence, cingulate PKG-I may represent a new therapeutic target against chronic pain and pain-related anxiety and depression.

2.
J Clin Invest ; 131(15)2021 08 02.
Article in English | MEDLINE | ID: mdl-34156983

ABSTRACT

Patients with neuropathic pain often experience comorbid psychiatric disorders. Cellular plasticity in the anterior cingulate cortex (ACC) is assumed to be a critical interface for pain perception and emotion. However, substantial efforts have thus far been focused on the intracellular mechanisms of plasticity rather than the extracellular alterations that might trigger and facilitate intracellular changes. Laminin, a key element of the extracellular matrix (ECM), consists of one α-, one ß-, and one γ-chain and is implicated in several pathophysiological processes. Here, we showed in mice that laminin ß1 (LAMB1) in the ACC was significantly downregulated upon peripheral neuropathy. Knockdown of LAMB1 in the ACC exacerbated pain sensitivity and induced anxiety and depression. Mechanistic analysis revealed that loss of LAMB1 caused actin dysregulation via interaction with integrin ß1 and the subsequent Src-dependent RhoA/LIMK/cofilin pathway, leading to increased presynaptic transmitter release probability and abnormal postsynaptic spine remodeling, which in turn orchestrated the structural and functional plasticity of pyramidal neurons and eventually resulted in pain hypersensitivity and anxiodepression. This study sheds new light on the functional capability of ECM LAMB1 in modulating pain plasticity and identifies a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified cingulate LAMB1/integrin ß1 signaling as a promising therapeutic target for the treatment of neuropathic pain and associated anxiodepression.


Subject(s)
Anxiety/metabolism , Behavior, Animal , Depression/metabolism , Laminin/metabolism , Neuralgia/metabolism , Peripheral Nervous System Diseases/metabolism , Animals , Anxiety/genetics , Depression/genetics , Female , Gene Knockdown Techniques , Gyrus Cinguli/metabolism , Laminin/genetics , Mice , Neuralgia/genetics , Peripheral Nervous System Diseases/genetics
3.
Pain ; 162(1): 135-151, 2021 01.
Article in English | MEDLINE | ID: mdl-32773598

ABSTRACT

Patients with neuropathic pain often experience exaggerated pain and anxiety. Central sensitization has been linked with the maintenance of neuropathic pain and may become an autonomous pain generator. Conversely, emerging evidence accumulated that central sensitization is initiated and maintained by ongoing nociceptive primary afferent inputs. However, it remains elusive what mechanisms underlie this phenomenon and which peripheral candidate contributes to central sensitization that accounts for pain hypersensitivity and pain-related anxiety. Previous studies have implicated peripherally localized cGMP-dependent protein kinase I (PKG-I) in plasticity of nociceptors and spinal synaptic transmission as well as inflammatory hyperalgesia. However, whether peripheral PKG-I contributes to cortical plasticity and hence maintains nerve injury-induced pain hypersensitivity and anxiety is unknown. Here, we demonstrated significant upregulation of PKG-I in ipsilateral L3 dorsal root ganglia (DRG), no change in L4 DRG, and downregulation in L5 DRG upon spared nerve injury. Genetic ablation of PKG-I specifically in nociceptors or post-treatment with intervertebral foramen injection of PKG-I antagonist, KT5823, attenuated the development and maintenance of spared nerve injury-induced bilateral pain hypersensitivity and anxiety. Mechanistic analysis revealed that activation of PKG-I in nociceptors is responsible for synaptic potentiation in the anterior cingulate cortex upon peripheral neuropathy through presynaptic mechanisms involving brain-derived neurotropic factor signaling. Our results revealed that PKG-I expressed in nociceptors is a key determinant for cingulate synaptic plasticity after nerve injury, which contributes to the maintenance of pain hypersensitivity and anxiety. Thereby, this study presents a strong basis for opening up a novel therapeutic target, PKG-I, in nociceptors for treatment of comorbidity of neuropathic pain and anxiety with least side effects.


Subject(s)
Cyclic GMP-Dependent Protein Kinase Type I , Neuralgia , Central Nervous System Sensitization , Ganglia, Spinal , Humans , Hyperalgesia/etiology , Neuralgia/etiology , Nociceptors
SELECTION OF CITATIONS
SEARCH DETAIL
...