Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
Diagnostics (Basel) ; 14(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38337789

ABSTRACT

BACKGROUND: Claudin-1 becomes overexpressed during the transformation of normal colonic mucosa to colorectal cancer (CRC). METHODS: Patient-derived organoids expressed clinically relevant target levels and genetic heterogeneity, and were established from human adenoma and normal colons. Colonoids were implanted orthotopically in the colon of immunocompromised mice. This pre-clinical model of CRC provides an intact microenvironment and representative vasculature. Colonoid growth was monitored using white light endoscopy. A peptide specific for claudin-1 was fluorescently labeled for intravenous administration. NIR fluorescence images were collected using endoscopy and endomicroscopy. RESULTS: NIR fluorescence images collected using wide-field endoscopy showed a significantly greater target-to-background (T/B) ratio for adenoma versus normal (1.89 ± 0.35 and 1.26 ± 0.06) colonoids at 1 h post-injection. These results were confirmed by optical sections collected using endomicroscopy. Optical sections were collected in vivo with sub-cellular resolution in vertical and horizontal planes. Greater claudin-1 expression by individual epithelial cells in adenomatous versus normal crypts was visualized. A human-specific cytokeratin stain ex vivo verified the presence of human tissues implanted adjacent to normal mouse colonic mucosa. CONCLUSIONS: Increased claudin-1 expression was observed from adenoma versus normal colonoids in vivo using imaging with wide field endoscopy and endomicrosopy.

2.
J Biomed Opt ; 29(Suppl 1): S11514, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38169937

ABSTRACT

Significance: A Fabry-Perot (FP) polymer film sensor can be used to detect acoustic waves in a photoacoustic endoscope (PAE) if the dimensions can be adequately scaled down in size. Current FP sensors have limitations in size, sensitivity, and array configurability. Aim: We aim to characterize and demonstrate the imaging performance of a miniature FP sensor to evaluate the effects of reduced size and finite dimensions. Approach: A transfer matrix model was developed to characterize the frequency response of a multilayer miniature FP sensor. An analytical model was derived to describe the effects of a substrate with finite thickness. Finite-element analysis was performed to characterize the temporal response of a sensor with finite dimensions. Miniature 2×2 mm2 FP sensors were designed and fabricated using gold films as reflective mirrors on either side of a parylene C film deposited on a glass wafer. A single-wavelength laser was used to interrogate the sensor using illumination delivered by fiber subprobes. Imaging phantoms were used to verify FP sensor performance, and in vivo images of blood vessels were collected from a live mouse. Results: The finite thickness substrate of the FP sensor resulted in echoes in the time domain signal that could be removed by back filtering. The substrate acted as a filter in the frequency domain. The finite lateral sensor dimensions produced side waves that could be eliminated by surface averaging using an interrogation beam with adequate diameter. The fabricated FP sensor produced a noise-equivalent pressure = 0.76 kPa, bandwidth of 16.6 MHz, a spectral full-width at-half-maximum = 0.2886 nm, and quality factor Q=2694. Photoacoustic images were collected from phantoms and blood vessels in a live mouse. Conclusions: A miniature wafer-based FP sensor design has been demonstrated with scaled down form factor for future use in PAE.


Subject(s)
Acoustics , Polymers , Animals , Mice , Polymers/chemistry , Spectrum Analysis , Phantoms, Imaging , Endoscopy, Gastrointestinal
3.
Sci Rep ; 13(1): 19527, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37945660

ABSTRACT

A wide-field endoscope that is sensitive to fluorescence can be used as an adjunct to conventional white light endoscopy by detecting multiple molecular targets concurrently. We aim to demonstrate a flexible fiber-coupled accessory that can pass forward through the instrument channel of standard medical endoscopes for clinical use to collect fluorescence images. A miniature scan mirror with reflector dimensions of 1.30 × 0.45  mm2 was designed, fabricated, and placed distal to collimated excitation beams at λex = 488, 660, and 785 nm. The mirror was driven at resonance for wide angular deflections in the X and Y-axes. A large image field-of-view (FOV) was generated in real time. The optomechanical components were packaged in a rigid distal tip with dimensions of 2.6 mm diameter and 12 mm length. The scan mirror was driven at 27.6 and 9.04 kHz in the fast (X) and slow (Y) axes, respectively, using a square wave with 50% duty cycle at 60 Vpp to collect fluorescence images at 10 frames per sec. Maximum total divergence angles of ± 27.4° and ± 22.8° were generated to achieve a FOV of 10.4 and 8.4 mm, respectively, at a working distance of 10 mm. Multiplexed fluorescence images were collected in vivo from the rectum of live mice using 3 fluorescently-labeled peptides that bind to unique cell surface targets. The fluorescence images collected were separated into 3 channels. Target-to-background ratios of 2.6, 3.1, and 3.9 were measured. This instrument demonstrates potential for broad clinical use to detect heterogeneous diseases in hollow organs.


Subject(s)
Endoscopes , Endoscopy , Mice , Animals , Endoscopy/methods , Optical Imaging
4.
Biomed Opt Express ; 14(8): 4277-4295, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37799693

ABSTRACT

A side-view dual axes confocal endomicroscope is demonstrated that can be inserted repetitively in hollow organs of genetically engineered mice for in vivo real-time imaging in horizontal and vertical planes. Near infrared (NIR) excitation at λex = 785 nm was used. A monolithic 3-axis parametric resonance scan mirror was fabricated using micro-electro-mechanical systems (MEMS) technology to perform post-objective scanning in the distal end of a 4.19 mm diameter instrument. Torsional and serpentine springs were designed to "switch" the mode of imaging between vertical and horizontal planes by tuning the actuation frequency. This system demonstrated real-time in-vivo images in horizontal and vertical planes with 310 µm depth and 1.75 and 7.5 µm lateral and axial resolution. Individual cells and discrete mucosal structures could be identified.

5.
Cancers (Basel) ; 15(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37835489

ABSTRACT

Colorectal cancer is a leading cause of cancer-related morbidity and mortality worldwide. Premalignant lesions that are flat and subtle in morphology are often missed in conventional colonoscopies. Patient-derived adenoma colonoids with high and low cMet expression and normal colonoids were implanted orthotopically in the colon of immunocompromised mice to serve as a preclinical model system. A peptide specific for cMet was labeled with IRDye800, a near-infrared (NIR) fluorophore. This peptide was administered intravenously, and in vivo imaging was performed using a small animal fluorescence endoscope. Quantified intensities showed a peak target-to-background ratio at ~1 h after intravenous peptide injection, and the signal cleared by ~24 h. The peptide was stable in serum with a half-life of 3.6 h. Co-staining of adenoma and normal colonoids showed a high correlation between peptide and anti-cMet antibody. A human-specific cytokeratin stain verified the presence of human tissues implanted among surrounding normal mouse colonic mucosa. Peptide biodistribution was consistent with rapid renal clearance. No signs of acute toxicity were found on either animal necropsy or serum hematology and chemistries. Human colonoids provide a clinically relevant preclinical model to evaluate the specific uptake of a NIR peptide to detect premalignant colonic lesions in vivo.

6.
VideoGIE ; 8(3): 110-112, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36935809

ABSTRACT

Video 1Flexible fiber cholangioscope for detection of near-infrared fluorescence.

7.
Sci Rep ; 12(1): 20155, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36418439

ABSTRACT

Confocal laser endomicroscopy is an emerging methodology to perform real time optical biopsy. Fluorescence images with histology-like quality can be collected instantaneously from the epithelium of hollow organs. Currently, scanning is performed at the proximal end of probe-based instruments used routinely in the clinic, and flexibility to control the focus is limited. We demonstrate use of a parametric resonance scanner packaged in the distal end of the endomicroscope to perform high speed lateral deflections. An aperture was etched in the center of the reflector to fold the optical path. This design reduced the dimensions of the instrument to 2.4 mm diameter and 10 mm length, allowing for forward passage through the working channel of a standard medical endoscope. A compact lens assembly provides lateral and axial resolution of 1.1 and 13.6 µm, respectively. A working distance of 0 µm and field-of-view of 250 µm × 250 µm was achieved at frame rates up to 20 Hz. Excitation at 488 nm was delivered to excite fluorescein, an FDA-approved dye, to generate high tissue contrast. The endomicroscope was reprocessed using a clinically-approved sterilization method for 18 cycles without failure. Fluorescence images were collected during routine colonoscopy from normal colonic mucosa, tubular adenomas, hyperplastic polyps, ulcerative colitis, and Crohn's colitis. Individual cells, including colonocytes, goblet cells, and inflammatory cells, could be identified. Mucosal features, such as crypt structures, crypt lumens, and lamina propria, could be distinguished. This instrument has potential to be used as an accessory during routine medical endoscopy.


Subject(s)
Colitis, Ulcerative , Lenses , Micro-Electrical-Mechanical Systems , Humans , Lasers , Histological Techniques
8.
Diagnostics (Basel) ; 12(9)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36140433

ABSTRACT

Esophageal adenocarcinoma (EAC) is a deadly cancer that is rising rapidly in incidence. The early detection of EAC with curative intervention greatly improves the prognoses of patients. A scanning fiber endoscope (SFE) using fluorescence-labeled peptides that bind rapidly to epidermal growth factor receptors showed a promising performance for early EAC detection. Target-to-background (T/B) ratios were calculated to quantify the fluorescence images for neoplasia lesion classification. This T/B calculation is generally based on lesion segmentation with the Chan-Vese algorithm, which may require hyperparameter adjustment when segmenting frames with different brightness and contrasts, which impedes automation to real-time video. Deep learning models are more robust to these changes, while accurate pixel-level segmentation ground truth is challenging to establish in the medical field. Since within our dataset the ground truth contained only a frame-level diagnosis, we proposed a computer-aided diagnosis (CAD) system to calculate the T/B ratio in real time. A two-step process using convolutional neural networks (CNNs) was developed to achieve automatic suspicious frame selection and lesion segmentation for T/B calculation. In the segmentation model training for Step 2, the lesion labels were generated with a manually tuned Chan-Vese algorithm using the labeled and predicted suspicious frames from Step 1. In Step 1, we designed and trained deep CNNs to select suspicious frames using a diverse and representative set of 3427 SFE images collected from 25 patient videos from two clinical trials. We tested the models on 1039 images from 10 different SFE patient videos and achieved a sensitivity of 96.4%, a specificity of 96.6%, a precision of 95.5%, and an area under the receiver operating characteristic curve of 0.989. In Step 2, 1006 frames containing suspicious lesions were used for training for fluorescence target segmentation. The segmentation models were tested on two clinical datasets with 100 SFE frames each and achieved mean intersection-over-union values of 0.89 and 0.88, respectively. The T/B ratio calculations based on our segmentation results were similar to the manually tuned Chan-Vese algorithm, which were 1.71 ± 0.22 and 1.72 ± 0.28, respectively, with a p-value of 0.872. With the graphic processing unit (GPU), the proposed two-step CAD system achieved 50 fps for frame selection and 15 fps for segmentation and T/B calculation, which showed that the frame rejection in Step 1 improved the diagnostic efficiency. This CAD system with T/B ratio as the real-time indicator is designed to guide biopsies and surgeries and to serve as a reliable second observer to localize and outline suspicious lesions highlighted by fluorescence probes topically applied in organs where cancer originates in the epithelia.

9.
Photoacoustics ; 26: 100355, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35479192

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is rising steadily in incidence, and more effective methods are needed for early cancer detection and image-guided surgery. Methods: We used a structural model to optimize the peptide sequence. Specific binding was validated in vitro with knockdown, competition, and co-localization assays. Multi-modal imaging was performed to validate specific binding in vivo in orthotopically-implanted human xenograft tumors. Results: Binding properties of WKGWSYLWTQQA were characterized by an apparent dissociation constant of kd = 43 nM, and an apparent association time constant of k = 0.26 min-1. The target-to-background ratio was significantly higher for the target versus control for both modalities. Ex-vivo evaluation using human HCC specimens supported the ability of the peptide to distinguish HCC from other liver pathologies. Conclusions: We have identified a peptide specific for CD44 with properties that are promising for clinical translation to image HCC in vivo.

10.
Endoscopy ; 54(12): 1198-1204, 2022 12.
Article in English | MEDLINE | ID: mdl-35299273

ABSTRACT

BACKGROUND: Esophageal adenocarcinoma (EAC) is a molecularly heterogeneous disease with poor prognosis that is rising rapidly in incidence. We aimed to demonstrate specific binding by a peptide heterodimer to Barrett's neoplasia in human subjects. METHODS: Peptide monomers specific for EGFR and ErbB2 were arranged in a heterodimer configuration and labeled with IRDye800. This near-infrared (NIR) contrast agent was topically administered to patients with Barrett's esophagus (BE) undergoing either endoscopic therapy or surveillance. Fluorescence images were collected using a flexible fiber accessory passed through the instrument channel of an upper gastrointestinal endoscope. Fluorescence images were collected from 31 BE patients. A deep learning model was used to segment the target (T) and background (B) regions. RESULTS: The mean target-to-background (T/B) ratio was significantly greater for high grade dysplasia (HGD) and EAC versus BE, low grade dysplasia (LGD), and squamous epithelium. At a T/B ratio of 1.5, sensitivity and specificity of 94.1 % and 92.6 %, respectively, were achieved for the detection of Barrett's neoplasia with an area under the curve of 0.95. No adverse events attributed to the heterodimer were found. EGFR and ErbB2 expression were validated in the resected specimens. CONCLUSIONS: This "first-in-human" clinical study demonstrates the feasibility of detection of early Barrett's neoplasia using a NIR-labeled peptide heterodimer.


Subject(s)
Barrett Esophagus , Esophageal Neoplasms , Precancerous Conditions , Humans , Precancerous Conditions/pathology , Barrett Esophagus/diagnostic imaging , Barrett Esophagus/epidemiology , Esophageal Neoplasms/diagnostic imaging , Esophageal Neoplasms/etiology , Hyperplasia , Peptides
11.
IEEE Sens J ; 22(24): 24493-24503, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-37497077

ABSTRACT

A flexible fiber-coupled confocal laser endomicroscope has been developed using an electrostatic micro-electromechanical system (MEMS) scanner located in at distal optics to collect in vivo images in human subjects. Long transmission lines are required that deliver drive and sense signals with limited bandwidth. Phase shifts have been observed between orthogonal X and Y scanner axes from environmental perturbations, which impede image reconstruction. Image processing algorithms used for correction depend on image content and quality, while scanner calibration in the clinic can be limited by potential patient exposure to lasers. We demonstrate a capacitive sensing method to track the motion of the electrostatically driven two-dimensional MEMS scanner and to extract phase information needed for image reconstruction. This circuit uses an amplitude modulation envelope detection method on shared drive and sensing electrodes of the scanner. Circuit parameters were optimized for performance given high scan frequencies, transmission line effects, and substantial parasitic coupling of drive signal to circuit output. Extraction of phase information further leverages nonlinear dynamics of the MEMS scanner. The sensing circuit was verified by comparing with data from a position sensing detector measurement. The phase estimation showed an accuracy of 2.18° and 0.79° in X and Y axes for motion sensing, respectively. The results indicate that the sensing circuit can be implemented with feedback control for pre-calibration of the scanner in clinical MEMS-based imaging systems.

12.
Antioxid Redox Signal ; 36(1-3): 39-56, 2022 01.
Article in English | MEDLINE | ID: mdl-34409853

ABSTRACT

Aim: Sessile serrated adenomas (SSAs) are premalignant lesions driven by the BRAFV600E mutation to give rise to colorectal cancers (CRCs). They are often missed during white light colonoscopy because of their subtle appearance. Previously, a fluorescently labeled 7mer peptide KCCFPAQ was shown to detect SSAs in vivo. We aim to identify the target of this peptide. Results: Peroxiredoxin-1 (Prdx1) was identified as the binding partner of the peptide ligand. In vitro binding assays and immunofluorescence staining of human colon specimens ex vivo supported this result. Prdx1 was overexpressed on the membrane of cells with the BRAFV600E mutation, and this effect was dependent on oxidative stress. RKO cells harboring the BRAFV600E mutation and human SSA specimens showed higher oxidative stress as well as elevated levels of Prdx1 on the cell membrane. Innovation and Conclusion: These results suggest that Prdx1 is overexpressed on the cell surface in the presence of oxidative stress and can serve as an imaging biomarker for in vivo detection of SSAs. Antioxid. Redox Signal. 36, 39-56.


Subject(s)
Adenoma , Colorectal Neoplasms , Peroxiredoxins , Adenoma/genetics , Adenoma/pathology , Biomarkers , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Humans , Mutation , Peroxiredoxins/genetics , Proto-Oncogene Proteins B-raf/genetics
13.
Pharmaceuticals (Basel) ; 14(11)2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34832857

ABSTRACT

The large size of nanoparticles prevents rapid extravasation from blood vessels and diffusion into tumors. Multimodal imaging uses the physical properties of one modality to validate the results of another. We aim to demonstrate the use of a targeted thin layer-protected ultra-small gold nanoparticles (Au-NPs) to detect cancer in vivo using multimodal imaging with photoacoustic and computed tomography (CT). The thin layer was produced using a mixed thiol-containing short ligands, including MUA, CVVVT-ol, and HS-(CH2)11-PEG4-OH. The gold nanoparticle was labeled with a heterobivalent (HB) peptide ligand that targets overexpression of epidermal growth factor receptors (EGFR) and ErbB2, hereafter HB-Au-NPs. A human xenograft model of esophageal cancer was used for imaging. HB-Au-NPs show spherical morphology, a core diameter of 4.47 ± 0.8 nm on transmission electron microscopy, and a hydrodynamic diameter of 6.41 ± 0.73 nm on dynamic light scattering. Uptake of HB-Au-NPs was observed only in cancer cells that overexpressed EGFR and ErbB2 using photoacoustic microscopy. Photoacoustic images of tumors in vivo showed peak HB-Au-NPs uptake at 8 h post-injection with systemic clearance by ~48 h. Whole-body images using CT validated specific tumor uptake of HB-Au-NPs in vivo. HB-Au-NPs showed good stability and biocompatibility with fast clearance and contrast-enhancing capability for both photoacoustic and CT imaging. A targeted thin layer-protected gold nanoprobe represents a new platform for molecular imaging and shows promise for early detection and staging of cancer.

14.
J Med Chem ; 64(21): 15639-15650, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34590489

ABSTRACT

Hepatocellular carcinoma (HCC) is rising steadily in incidence, and more effective methods are needed for early detection and image-guided surgery. Glypican-3 (GPC3) is a cell surface biomarker that is overexpressed in early-stage cancer but not in cirrhosis. An IRDye800-labeled 12-mer amino acid sequence was identified, and specific binding to GPC3 was validated in vitro and in orthotopically implanted HCC tumors in vivo. Over 4-fold greater binding affinity and 2-fold faster kinetics were measured by comparison with previous GPC3 peptides. Photoacoustic images showed peak tumor uptake at 1.5 h post-injection and clearance within ∼24 h. Laparoscopic and whole-body fluorescence images showed strong intensity from tumor versus adjacent liver with about a 2-fold increase. Immunofluorescence staining of human liver specimens demonstrated specific binding to HCC versus cirrhosis with 79% sensitivity and 79% specificity, and normal liver with 81% sensitivity and 84% specificity. The near-infrared peptide is promising for early HCC detection in clinical trials.


Subject(s)
Carcinoma, Hepatocellular/genetics , Glypicans/genetics , Liver Neoplasms/genetics , Animals , Carcinoma, Hepatocellular/diagnostic imaging , Cell Line, Tumor , Dose-Response Relationship, Drug , Female , Glypicans/deficiency , Humans , Liver Neoplasms/diagnostic imaging , Liver Neoplasms, Experimental/diagnostic imaging , Liver Neoplasms, Experimental/genetics , Mice , Mice, Nude , Molecular Structure , Optical Imaging , Photoacoustic Techniques , Structure-Activity Relationship
16.
Am J Gastroenterol ; 115(11): 1891-1901, 2020 11.
Article in English | MEDLINE | ID: mdl-33156108

ABSTRACT

INTRODUCTION: Duodenal epithelial barrier impairment and immune activation may play a role in the pathogenesis of functional dyspepsia (FD). This study was aimed to evaluate the duodenal epithelium of patients with FD and healthy individuals for detectable microscopic structural abnormalities. METHODS: This is a prospective study using esophagogastroduodenoscopy enhanced with duodenal confocal laser endomicroscopy (CLE) and mucosal biopsies in patients with FD (n = 16) and healthy controls (n = 18). Blinded CLE images analysis evaluated the density of epithelial gaps (cell extrusion zones), a validated endoscopic measure of the intestinal barrier status. Analyses of the biopsied duodenal mucosa included standard histology, quantification of mucosal immune cells/cytokines, and immunohistochemistry for inflammatory epithelial cell death called pyroptosis. Transepithelial electrical resistance (TEER) was measured using Ussing chambers. Epithelial cell-to-cell adhesion proteins expression was assessed by real-time polymerase chain reaction. RESULTS: Patients with FD had significantly higher epithelial gap density on CLE in the distal duodenum than that of controls (P = 0.002). These mucosal abnormalities corresponded to significant changes in the duodenal biopsy samples of patients with FD, compared with controls, including impaired mucosal integrity by TEER (P = 0.009) and increased number of epithelial cells undergoing pyroptosis (P = 0.04). Reduced TEER inversely correlated with the severity of certain dyspeptic symptoms. Furthermore, patients with FD demonstrated altered duodenal expression of claudin-1 and interleukin-6. No differences in standard histology were found between the groups. DISCUSSION: This is the first report of duodenal CLE abnormalities in patients with FD, corroborated by biopsy findings of epithelial barrier impairment and increased cell death, implicating that duodenal barrier disruption is a pathogenesis factor in FD and introducing CLE a potential diagnostic biomarker in FD.


Subject(s)
Duodenum/pathology , Dyspepsia/pathology , Endoscopy, Digestive System , Epithelium/pathology , Intestinal Mucosa/pathology , Microscopy, Confocal , Pyroptosis , Adult , Aged , Biopsy , Case-Control Studies , Caspase 1/metabolism , Cell Adhesion/genetics , Claudin-1/genetics , Duodenum/metabolism , Dyspepsia/genetics , Dyspepsia/metabolism , Electric Impedance , Epithelium/metabolism , Female , Humans , Interleukin-6/genetics , Intestinal Mucosa/metabolism , Male , Middle Aged , Young Adult
17.
IEEE Trans Med Imaging ; 39(7): 2406-2414, 2020 07.
Article in English | MEDLINE | ID: mdl-32012007

ABSTRACT

Point-of-care medical diagnosis demands immediate feedback on tissue pathology. Confocal endomicroscopy can provide real-time in vivo images with histology-like features. The working channel in medical endoscopes are becoming smaller in dimension. Microsystems methods can produce tiny mechanical scanners. We demonstrate a flexible fiber instrument for in vivo imaging as an endoscope accessory. The optical path is folded on-axis to reduce length while allowing the beam to expand and achieve a numerical aperture of 0.41. A high-speed parametric resonance mirror produces large deflection angles > 13°, and is mounted on a 2 mm diameter chip designed with clamp structures for reduced space. A compact lens assembly provides diffraction-limited lateral and axial resolution of 1.5 and [Formula: see text], respectively. A working distance of [Formula: see text] and field-of-view of [Formula: see text] m are achieved. Miniature apparatus is fabricated to assemble and align the scanhead components. The optics and scanner are packaged in a distal tip with 2.4 mm diameter and 10 mm rigid length. These dimensions allow the endomicroscope to pass forward easily through the 2.8 mm diameter working channel in medical endoscopes commonly used in clinical practice. Fluorescence images are collected in vivo at 10 frames per second in the colon of genetically-engineered mice that spontaneously develop adenomas. A FITC-labeled peptide heterodimer is administered intravenously to provide specific contrast. Sub-cellular structures are visualized to distinguish pre-malignant from normal mucosa. These results demonstrate use of microsystems methods to produce an ultra-compact instrument with sufficiently small dimensions for broad use.


Subject(s)
Colon , Animals , Mice
18.
Clin Transl Gastroenterol ; 11(1): e00089, 2020 01.
Article in English | MEDLINE | ID: mdl-31922993

ABSTRACT

OBJECTIVES: Conventional colonoscopy with white light illumination detects colonic adenomas based on structural changes alone and is limited by a high miss rate. We aim to demonstrate an integrated imaging strategy that combines wide-field endoscopy and confocal endomicroscopy in real time to visualize molecular expression patterns in vivo to detect premalignant colonic mucosa. METHODS: A peptide specific for claudin-1 is labeled with Cy5.5 and administrated intravenously in genetically engineered mice that develop adenomas spontaneously in the distal colon. Wide-field endoscopy is used to identify the presence of nonpolypoid and polypoid adenomas. Anatomic landmarks are used to guide placement of a confocal endomicroscope with side-view optics to visualize claudin-1 expression patterns with subcellular resolution. RESULTS: Wide-field fluorescence images show peak uptake in colon adenoma at ∼1 hour after systemic peptide administration, and lesion margins are clearly defined. Further examination of the lesion using a confocal endomicroscope shows dysplastic crypts with large size, elongated shape, distorted architecture, and variable dimension compared with normal. The mean fluorescence intensity is significantly higher for dysplasia than normal. Increased claudin-1 expression in dysplasia vs normal is confirmed ex vivo, and the binding pattern is consistent with the in vivo imaging results. DISCUSSION: Wide-field endoscopy can visualize molecular expression of claudin-1 in vivo to localize premalignant colonic mucosa, and confocal endomicroscopy can identify subcellular feature to distinguish dysplasia from normal.


Subject(s)
Adenoma/metabolism , Claudin-1/metabolism , Colonic Polyps/metabolism , Colorectal Neoplasms/metabolism , Adenoma/diagnosis , Adenoma/genetics , Adenoma/pathology , Adenomatous Polyps/diagnosis , Adenomatous Polyps/genetics , Adenomatous Polyps/metabolism , Adenomatous Polyps/pathology , Animals , Animals, Genetically Modified , Carbocyanines , Claudin-1/genetics , Colonic Polyps/diagnosis , Colonic Polyps/genetics , Colonic Polyps/pathology , Colonoscopy , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Fluorescent Antibody Technique , Fluorescent Dyes , Genes, APC , Immunohistochemistry , Mice , Microscopy, Confocal , Peptides , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction
19.
IEEE Trans Ind Electron ; 67(2): 1328-1336, 2020 Feb.
Article in English | MEDLINE | ID: mdl-34366544

ABSTRACT

A threshold signal detector is proposed to improve the state estimation accuracy of an extended Kalman filter (EKF) and is validated experimentally with a MEMS electrostatic micro-scanner. A first order derivative of Gaussian (DOG) filter is used to detect and locate rapid changes in voltage signal caused by crossing of a threshold angle determined by maximum overlap of capacitive electrodes. The event-triggered measurement is used in the update step of the EKF to provide intermittent but more accurate angle measurements than those of the capacitive sensor's continuous output. Experiments on the electrostatic micro-scanner show that with the threshold signal detector incorporated, the average position estimation accuracy of the EKF is improved by 15.1%, with largest improvement (30.3%) seen in low signal-to-noise ratio (SNR) conditions. A parametric study is conducted to examine sampling frequency and capacitance profile, among other factors that may affect detection error and EKF accuracy.

20.
IEEE ASME Trans Mechatron ; 25(2): 661-672, 2020 Apr.
Article in English | MEDLINE | ID: mdl-33500606

ABSTRACT

We present a method to estimate high frequency rotary motion of a highly compact electrostatic micro-scanner using the same electrodes for both actuation and sensing. The accuracy of estimated rotary motion is critical for reducing blur and distortion in image reconstruction applications with the micro-scanner given its changing dynamics due to perturbations such as temperature. To overcome the limitation that no dedicated sensing electrodes are available in the proposed applications due to size constraints, the method adopts electromechanical amplitude modulation (EAM) to separate motion signal from parasitic capacitance feedthrough, and a novel non-linear measurement model is derived to characterize the relationship between large out-of-plane angular motion and circuit output. To estimate motion, an extended Kalman filter (EKF) and an unscented Kalman filter (UKF) are implemented, incorporating a process model based on the micro-scanner's parametric resonant dynamics and the measurement model. Experimental results show that compared to estimation without using the measurement model, our method is able to improve the rotary motion estimation accuracy of the micro-scanner significantly, with a reduction of root-mean-square error (RMSE) in phase shift of 86.1%, and a reduction of RMSE in angular position error of 78.5 %.

SELECTION OF CITATIONS
SEARCH DETAIL
...