Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 240(6): 2386-2403, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37817383

ABSTRACT

Root hair is regarded as a pivotal complementary survival tactic for mycorrhizal plant like Abies beshanzuensis when symbiosis is disrupted. Relatively little is known about the mechanism underlying root hair morphogenesis in plant species that are strongly dependent on mycorrhizal symbiosis. Many of these species are endangered, and this knowledge is critical for ensuring their survival. Here, a MYB6/bHLH13-sucrose synthase 2 (AbSUS2) module was newly identified and characterized in A. beshanzuensis using bioinformatics, histochemistry, molecular biology, and transgenesis. Functional, expression pattern, and localization analysis showed that AbSUS2 participated in sucrose synthesis and was involved in root hair initiation in A. beshanzuensis. Additionally, the major enzymatic product of AbSUS2 was found to suppress root hair initiation in vitro. Our data further showed that a complex involving the transcription factors AbMYB6 and AbbHLH13 directly interacted with the promoter of AbSUS2 and strengthened its expression, thereby inhibiting root hair initiation in response to exogenous sucrose. Our findings offer novel insights into how root hair morphogenesis is regulated in mycorrhizal plants and also provide a new strategy for the preservation of endangered mycorrhizal plant species.


Subject(s)
Abies , Mycorrhizae , Mycorrhizae/physiology , Symbiosis , Sucrose/metabolism , Sugars/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant
2.
Mol Hortic ; 3(1): 17, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37789434

ABSTRACT

Tomato (Solanum lycopersicum) is one of the most important vegetable crops in the world and abiotic stresses often cause serious problems in tomato production. It is thus important to identify new regulators in stress response and to devise new approaches to promote stress tolerance in tomato. Previous studies have shown that small secreted peptides (SSPs) are important signal molecules regulating plant growth and stress response by mediating intercellular communication. However, little is known about tomato SSPs, especially their roles in responding to abiotic stresses. Here we report the identification of 1,050 putative SSPs in the tomato genome, 557 of which were classified into 38 known SSP families based on their conserved domains. GO and transcriptome analyses revealed that a large proportion of SlSSPs might be involved in abiotic stress response. Further analysis indicated that stress response related cis-elements were present on the SlCEP promotors and a number of SlCEPs were significantly upregulated by drought treatments. Among the drought-inducible SlCEPs, SlCEP10 and SlCEP11b were selected for further analysis via exogenous application of synthetic peptides. The results showed that treatments with both SlCEP10 and SlCEP11b peptides enhanced tomato drought stress tolerance, indicating the potential roles of SlSSPs in abiotic stress response.

3.
Hortic Res ; 10(3): uhad008, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36960429

ABSTRACT

Grafting facilitates the interaction between heterologous cells with different genomes, resulting in abundant phenotypic variation, which provides opportunities for crop improvement. However, how grafting-induced variation occurs and is transmitted to progeny remains elusive. A graft chimera, especially a periclinal chimera, which has genetically distinct cell layers throughout the plant, is an excellent model to probe the molecular mechanisms of grafting-induced variation maintenance. Here we regenerated a plant from the T-cell layer of a periclinal chimera, TCC (where the apical meristem was artificially divided into three cell layers - from outside to inside, L1, L2, and L3; T = Tuber mustard, C = red Cabbage), named rTTT0 (r = regenerated). Compared with the control (rsTTT, s = self-grafted), rTTT0 had multiple phenotypic variations, especially leaf shape variation, which could be maintained in sexual progeny. Transcriptomes were analyzed and 58 phenotypic variation-associated genes were identified. Whole-genome bisulfite sequencing analyses revealed that the methylome of rTTT0 was changed, and the CG methylation level was significantly increased by 8.74%. In rTTT0, the coding gene bodies are hypermethylated in the CG context, while their promoter regions are hypomethylated in the non-CG context. DNA methylation changes in the leaf shape variation-associated coding genes, ARF10, IAA20, ROF1, and TPR2, were maintained for five generations of rTTT0. Interestingly, grafting chimerism also affected transcription of the microRNA gene (MIR), among which the DNA methylation levels of the promoters of three MIRs associated with leaf shape variation were changed in rTTT0, and the DNA methylation modification of MIR319 was maintained to the fifth generation of selfed progeny of rTTT0 (rTTT5). These findings demonstrate that DNA methylation of coding and non-coding genes plays an important role in heterologous cell interaction-induced variation formation and its transgenerational inheritance.

4.
Plants (Basel) ; 12(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36678989

ABSTRACT

Abies beshanzuensis, an extremely rare and critically endangered plant with only three wild adult trees globally, is strongly mycorrhizal-dependent, leading to difficulties in protection and artificial breeding without symbiosis. Root hair morphogenesis plays an important role in the survival of mycorrhizal symbionts. Due to the lack of an effective genome and transcriptome of A. beshanzuensis, the molecular signals involved in the root hair development remain unknown, which hinders its endangered mechanism analysis and protection. Herein, transcriptomes of radicles with root hair (RH1) and without root hair (RH0) from A. beshanzuensis in vitro plantlets were primarily established. Functional annotation and differentially expressed gene (DEG) analysis showed that the two phenotypes have highly differentially expressed gene clusters. Transcriptome divergence identified hormone and sugar signaling primarily involved in root hair morphogenesis of A. beshanzuensis. Weighted correlation network analysis (WGCNA) coupled with quantitative real-time PCR (qRT-PCR) found that two hormone-sucrose-root hair modules were linked by IAA17, and SUS was positioned in the center of the regulation network, co-expressed with SRK2E in hormone transduction and key genes related to root hair morphogenesis. Our results contribute to better understanding of the molecular mechanisms of root hair development and offer new insights into deciphering the survival mechanism of A. beshanzuensis and other endangered species, utilizing root hair as a compensatory strategy instead of poor mycorrhizal growth.

5.
Mol Hortic ; 2(1): 26, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-37789398

ABSTRACT

Increasingly warming temperature impacts on all aspects of growth and development in plants. Flower development is a complex process that is very sensitive to ambient temperature, and warming temperatures often lead to abnormal flower development and remarkably reduce the quality and yield of inflorescent vegetables and many other crops, which can be exemplified by Brassica oleracea cv. Green Harmony F1, a broccoli cultivar, whose floral development is ceased at inflorescence meristem (at 28 °C) or floral primordium stage (at 22 °C), forming a cauliflower-like curd (28 °C) or intermediate curd (22 °C) instead of normal broccoli head at 16 °C. However, the underlying molecular regulatory mechanisms are not well understood. Here we report that warming temperature (28 °C or 22 °C) induced hypermethylation of the genome, especially the promoter regions of such sets of genes as ribosome biogenesis-related and others, leading to the suppression of the apex-highly-expressed distinctive genes, subsequently resulting in the abnormal floral development, as revealed by methylome and transcriptome co-profiling. The regulation of warming-induced abnormal floral development in broccoli was further verified by the fact that the DNA methylation inhibitor 5-azacytidine (5-azaC) released the expression of genes from the warming temperature-induced suppression, and restored the broccoli development to normalcy at warming temperature. The research provided new approaches to breeding broccoli and other crops for growing in wider or warmer temperature zones. Graphical Abstract.

SELECTION OF CITATIONS
SEARCH DETAIL
...