Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 103: 106786, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309049

ABSTRACT

To maximally maintain fruits and vegetables quality after harvest, this study used ultrasonic (US) and ultra-high pressure (UHP) techniques as pretreatments for radio frequency vacuum (RFV) drying of peach slices, and investigated the effects of different pretreatments (US, UHP, UHP-US, and US-UHP) on drying characteristics, physicochemical qualities, texture properties, and sensory evaluation of peach slices. Results showed that the drying rate was increased by 15.79 âˆ¼ 54.39 % and the contents of pectin, hemicellulose, total phenolic, total flavonoid, phenolic acids, individual sugar annd antioxidant of the samples were significantly increased after US combined with UHP pretreatment (P < 0.05). US-UHP + RFV dried peach slices obtained brighter color, better texture attributes of hardness, cohesiveness, chewiness, springiness, and resilience. The dehydrated samples pretreated by UHP-US had the best overall acceptance, appearance, and crispness with lower off-odor and sourness compared to the dehydrated peach slices with US and UHP pretreatment. Notably, the highest cellulose and organic acids were found in dehydrated peach slices by control, followed by samples US, and samples with UHP pretreatment. The microstructure showed that the internal organization of peach slices appeared as uniform and regular honeycomb porous structure after US-UHP pretreatment. The findings may provide theoretical reference for the development of energy-efficient and high-quality drying technology for fruits and vegetables.


Subject(s)
Prunus persica , Vacuum , Desiccation/methods , Antioxidants/chemistry , Phenols/analysis
2.
J Food Sci ; 89(2): 966-981, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38161279

ABSTRACT

By using ultrasonic synergy vacuum far-infrared drying (US-VFID), the effects of different conditions on the drying kinetics, functional properties, and microstructure of Codonopsis pilosula slices were studied. The sparrow search algorithm (SSA) was used to optimize the back-propagation (BP) neural network to predict the moisture ratio during drying. With the increase of ultrasonic frequency, power and radiation temperature, the drying time of C. pilosula was shortened. The drying time of US-VFID was 25% shorter than VFID, when radiation temperature was 50°C, ultrasonic power was 48 W, and frequency was 28 kHz. The SSA-BP neural network, the average absolute error prediction was 0.0067. Compared with hot air drying (HAD), the total phenolic content and antioxidant activity of C. pilosula by US-VFID were increased by 29.47% and 8.67%, respectively, and a reduction in color contrast of 16.19%. The dilation and generation of microcapillary of C. pilosula were more obvious. The study revealed US-VFID could be used for the selection and process control of agro-processing methods for C. pilosula products.


Subject(s)
Codonopsis , Ultrasonics , Vacuum , Codonopsis/chemistry , Temperature , Antioxidants/chemistry
3.
Molecules ; 28(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37513468

ABSTRACT

Ultrasonic (US) maltreatment was performed before the vacuum far-infrared drying (VFID) of Codonopsis pilosula (CP) slices to investigate the effects of different US parameters on the drying characteristics and nutrients of CP slices. The grey correlation method with relative correlation degree (ri) as the evaluation measure was used to construct a model for the evaluation of the pretreatment quality of CP and to determine the optimal pretreatment conditions. The results showed that with the increase in US frequency and power, the drying rate increased. Under the conditions of US power of 180 W, frequency of 60 kHz and a pre-treatment time of 30 min, the drying time reduced by 28.6%. The contents of polysaccharide and syringin in dried CP slices pretreated by US increased by 14.7% and 62.0%, respectively, compared to the non-pre-treated samples, while the total flavonoid content decreased by 10.0%. In terms of colour, pretreatment had a certain protective effect on the red colour of dried products. The highest relative correlation (0.574) and the best overall quality of performance were observed at 180 W, 60 kHz and 30 min. Overall, US technology is suitable for the pretreatment processing of CP, which is of great significance to the drying of CP.


Subject(s)
Codonopsis , Ultrasonics , Kinetics , Desiccation/methods , Vacuum
4.
Foods ; 12(12)2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37372625

ABSTRACT

In this paper, the effects of different ultrasonic pretreatment processes on the far-infrared drying characteristics, quality indexes, and microstructure of licorice are evaluated. The results showed that ultrasonic pretreatment, combined with far-infrared drying, significantly reduced the drying time and moisture content of licorice compared with those of the control group. The highest total flavonoid content was obtained at an ultrasound power of 80 W. The total phenolic content (0.686 mg gallic acid equivalent/g) was higher than that in the control group, the increase was 19.4%, and its content was the highest at the sonication frequency of 20 kHz. The antioxidant capacity tended to increase and then decrease with the increase in sonication time, sonication power, and sonication frequency, and was the highest at 30 min of sonication. The soluble sugar content (31.490 mg glucose equivalent/g) was the highest at 30 kHz and 30 min. Observation of the microstructure revealed that the surface structure of the ultrasonic pretreated licorice slices changed significantly, forming more micropore channels, which facilitated the mass heat transfer during the drying process. In conclusion, ultrasonic pretreatment can significantly improve the quality of licorice tablets and significantly reduce the time required for subsequent drying. The combination of pretreatment parameters of 60 W ultrasonic power and 40 kHz ultrasonic frequency for 30 min was found to be an optimal combination of pretreatment parameters; therefore, this study may provide a technical reference for the industrialization of licorice drying.

5.
J Food Sci ; 88(5): 1905-1923, 2023 May.
Article in English | MEDLINE | ID: mdl-37038306

ABSTRACT

This study investigated the effects of ultrasonic pretreatment time, ultrasonic power, and ultrasonic frequency on the drying characteristics and physicochemical quality of Angelica sinensis, and the physicochemical quality content was selected as the evaluation index, the entropy weight-coefficient of variation method was used to calculate the coupling weight and comprehensive score, and the weighted Technique for Order Preference by Similarity to Ideal Solution method was used to verify the evaluation model. The results showed that the drying rate of materials after ultrasonic treatment was increased by 22.48% to 93.26%, and the effective moisture diffusivity was in the range between 4.6831 × 10-9 and 7.0722 × 10-9  m2 /s, and the drying activation energy was 31.90 kJ/mol. The energy consumption decreased by 5.75% to 25.88%. Compared with the samples without the ultrasonic pretreatment, the chlorogenic acid, ferulic acid, senkyunolide H, senkyunolide I, 3-butenylphthalide, ligustilide, polysaccharides, total phenolic content, total flavonoid content, and antioxidant capacity of A. sinensis were increased after ultrasonic treatment, and the color, rehydration ratio, shrinkage ratio, and microstructure of dried products were improved significantly (p < 0.05). However, the quality of the dried products decreased after ultrasonic treatment for 40 min with an ultrasonic frequency of 60 kHz, and the internal tissue structure was destroyed. In summary, ultrasonic pretreatment at low frequency and high power can significantly increase the drying rate and improve the physicochemical quality of dried products.


Subject(s)
Angelica sinensis , Ultrasonics , Vacuum , Angelica sinensis/chemistry , Entropy , Desiccation/methods
6.
Molecules ; 28(4)2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36838720

ABSTRACT

In order to explore the effects of different pretreatment methods on the ultrasonic far-infrared synergistic drying characteristics and quality of wolfberry, the bioactive components (polysaccharide, total phenol, total flavonoids, and antioxidants), the quality characteristics (rehydration ratio, color, vitamin C content, and betaine content), and the microstructure of the dried products were used as evaluation indices to test wolfberry treated by five different pretreatments (hot blanching; candied pretreatment; NaOH solution treatment; NaCl solution treatment; and Na2CO3 solution treatment). The results showed that hot blanching pretreatment improved the drying rate and shortened the drying time, and that the vitamin C content of dried products pretreated by hot blanching (92.56 mg/100 g) was higher than that of dried products pretreated by other methods. All five pretreatment methods increased the contents of the total phenols, vitamin C, and betaine of wolfberry. Wolfberry treated by candied pretreatment had lower color differences and higher contents of polysaccharide (0.83 g/g), total phenol (9.26 mg/g), and total flavonoids (2.61 mg/g) than wolfberry treated by the other pretreatment methods. Wolfberry pretreated by NaCl solution had the strongest antioxidant capacity (65.01%). Wolfberry pretreated by Na2CO3 solution had the highest betaine content (3.24%). The observation of the microstructure of the dried products revealed that hot blanching caused the most damage to wolfberry, while the candied pretreatment was less destructive to the tissue cells of wolfberry. On the whole, the dried wolfberry products obtained by the candied pretreatment were of a better quality than products obtained by the other pretreatment methods.


Subject(s)
Lycium , Lycium/chemistry , Ultrasonics , Phenol , Betaine , Sodium Chloride , Antioxidants/chemistry , Ascorbic Acid/chemistry , Desiccation/methods , Phenols , Flavonoids , Polysaccharides
7.
Foods ; 11(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35681395

ABSTRACT

To overcome the problems of a long conventional drying time, low energy efficiency, and poor product quality, a segmented drying approach was developed for fresh wolfberry (Lycium barbarum) using a radio frequency (RF)-hot air drying process, which was investigated under different parameters of plate spacing (80, 90, 100 mm), vacuum degree (0.015, 0.025, 0.035 Mpa), and hot air temperature (50, 55, 60 °C). Analysis of the wolfberry's drying characteristics, comprehensive quality, and microstructure indicated that: combined drying was faster and less time-consuming than natural drying or hot air drying, and components such as polysaccharides, ascorbic acid, and betaine in wolfberries were effectively retained. Based on the acceptable drying rate, stable temperature application, and avoidance of arcing effects, the optimal combined segmented drying parameters were determined to be as follows: a plate spacing of 90 mm, vacuum degree of 0.025 MPa, and air temperature of 55 °C. For the dried wolfberries under these conditions, the total drying time was 17 h and the berries had an improved comprehensive quality, the content of total soluble sugars was 0.62 g/g, total phenol was 10.01 mg/g, total flavonoids was 2.60 mg/g, VC was 3.18 mg/100 g, betaine was 3.48%, oxidation resistance represented by an inhibition rate was 66.14%, color was better, and rehydration rate was 48.56%. The microstructure was more regular because of the special dielectric heating characteristics of RF vacuuming. Despite the differing drying characteristics of individual materials, the overall RF-hot air combined drying process was found to achieve high-quality dehydration of wolfberries.

SELECTION OF CITATIONS
SEARCH DETAIL
...