Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Technol ; 58(31): 13717-13725, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39066729

ABSTRACT

Carbon dioxide (CO2) can be converted to valuable organic chemicals using light irradiation and photocatalysis. Today, light-energy loss, poor conversion efficiency, and low quantum efficiency (QE) hamper the application of photocatalytic CO2 reduction. To overcome these drawbacks, we developed an efficient photocatalytic reactor platform for producing formic acid (HCOOH) by coating an iron-based metal-organic framework (Fe-MOF) onto side-emitting polymeric optical fibers (POFs) and using hollow-fiber membranes (HFMs) to deliver bubble-free CO2. The photocatalyst, Fe-MOF with amine-group (-NH2) decoration, provided exceptional dissolved inorganic carbon (DIC) absorption. The dual-fiber system gave a CO2-to-HCOOH conversion rate of 116 ± 1.2 mM h-1 g-1, which is ≥18-fold higher than the rates in photocatalytic slurry systems. The 12% QE obtained using the POF was 18-fold greater than the QE obtained by a photocatalytic slurry. The conversion efficiency and product selectivity of CO2-to-HCOOH were up to 22 and 99%, respectively. Due to the dual efficiencies of bubble-free CO2 delivery and the high QE achieved using the POF platform, the dual-fiber system had energy consumption of only 0.60 ± 0.05 kWh mol-1, 3000-fold better than photocatalysis using slurry-based systems. This innovative dual-fiber design enables efficient CO2 valorization without the use of platinum group metals or rare earth elements.


Subject(s)
Carbon Dioxide , Carbon Dioxide/chemistry , Catalysis , Optical Fibers
2.
Water Res ; 260: 121880, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38870861

ABSTRACT

In-situ hydrogen peroxide (H2O2) finds applications in disinfection and oxidation processes. Photoproduction of H2O2 from water and oxygen, avoids reliance upon organic chemicals, and potentially enables smaller-sized or lower-cost reactors than electrochemical methods. In ultrapure water, we previously demonstrated a novel dual-fiber system coupling a light emitting diode (LED) with a metal-organic framework (MOF) catalyst-coated optical fiber (POF-MIL-101(Fe)) and O2-based hollow-membrane fibers and achieved a remarkable H2O2 yield, 308 ± 1.4 mM h-1 catalyst-g-1. To enable H2O2 production anywhere we sought to understand the impacts of common water quality parameters. The production of H2O2 was not affected by added sodium, potassium, hydroxide, sulfate or nitrate ions. There was consistent performance over a wide pH range (4-10), maintaining a high production rate of 232 ± 3.5 mM h-1 catalyst-g-1 even at pH 10, a condition typically unfavorable for H2O2 photoproduction. Chloride ions produced hypochlorous acid, consuming in-situ produced H2O2. Phosphate adsorption on the iron-based MOF catalysts blocked H2O2 production. Inorganic carbon species inhibited H2O2 production due to in-situ formic acid. Encouraging results were obtained using atmospheric water (i.e., condensate), with rates reaching 288 ± 6.1 mM h-1 catalyst-g-1, comparable to ultrapure water. This underscores atmospheric water as a variable alternative, available in nearly all building air conditioning systems or could overcome geographical constraints, particularly in regions where obtaining pure water resources is challenging, offering a cost-effective solution. The dual-fiber reactor using atmospheric water enables high-efficiency H2O2 production anytime and anywhere.


Subject(s)
Hydrogen Peroxide , Hydrogen Peroxide/chemistry , Catalysis , Water Quality , Optical Fibers , Water Purification/methods
3.
Environ Sci Technol ; 57(41): 15736-15746, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37802050

ABSTRACT

Biofilms give rise to a range of issues, spanning from harboring pathogens to accelerating microbial-induced corrosion in pressurized water systems. Introducing germicidal UV-C (200-280 nm) irradiation from light-emitting diodes (LEDs) into flexible side-emitting optical fibers (SEOFs) presents a novel light delivery method to inhibit the accumulation of biofilms on surfaces found in small-diameter tubing or other intricate geometries. This work used surfaces fully submerged in flowing water that contained Pseudomonas aeruginosa, an opportunistic pathogen commonly found in water system biofilms. A SEOF delivered a UV-C gradient to the surface for biofilm inhibition. Biofilm growth over time was monitored in situ using optical conference tomography. Biofilm formation was effectively inhibited when the 275 nm UV-C irradiance was ≥8 µW/cm2. Biofilm samples were collected from several regions on the surface, representing low and high UV-C irradiance. RNA sequencing of these samples revealed that high UV-C irradiance inhibited the expression of functional genes related to energy metabolism, DNA repair, quorum sensing, polysaccharide production, and mobility. However, insufficient sublethal UV-C exposure led to upregulation genes for SOS response and quorum sensing as survival strategies against the UV-C stress. These results underscore the need to maintain minimum UV-C exposure on surfaces to effectively inhibit biofilm formation in water systems.


Subject(s)
Biofouling , Pseudomonas aeruginosa/physiology , Optical Fibers , Disinfection/methods , Biofilms/radiation effects , Water , Quorum Sensing
SELECTION OF CITATIONS
SEARCH DETAIL