Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Environ Res ; 193: 106300, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103303

ABSTRACT

Selecting high-quality seeds with long-term advantages in behavior, intestinal health, and growth are the key to improve production efficiency of sea cucumber aquaculture. It is proposed to distinguish the seed quality of sea cucumbers by color morphs. In the present study, we carried out a 6-week experiment to investigate behavior, intestinal health, and growth of small sea cucumbers Apostichopus japonicus in different color morphs. We found that dark-colored seeds of sea cucumber were significantly more adhesive than those with light-colored seeds. This indicates that the dark-colored seeds of A. japonicus are more adaptive in complex environments in stock enhancement. Food consumption and defecation outputs of dark-colored seeds were significantly higher than those of light-colored seeds. In addition, the feces of dark-colored seeds of sea cucumber had significantly lower crude protein content and better intestinal morphology, but there was no advantage in digestive enzyme activities. This suggests that there are potential digestive benefits in dark-colored seeds. Further, dark-colored seeds of A. japonicus showed significantly better intestinal microbiota composition and faster growth rate than that of light-colored seeds. In conclusion, the present results prove that dark-colored seeds of sea cucumber have long-term advantages in behavior, intestinal health and growth. Overall, this study provides important information for the early selection of seeds and the consequent production efficiency in sea cucumber aquaculture.


Subject(s)
Sea Cucumbers , Stichopus , Animals , Diet , Immunity, Innate , Aquaculture
2.
Mar Environ Res ; 192: 106179, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37742388

ABSTRACT

Mass mortality caused by skin ulceration syndrome (SUS) is the bottle-neck for the sustainable aquaculture of the sea cucumber Apostichopus japonicus. In the present study, probiotic Bacillus licheniformis (0.25 × 109 CFU/g) was used as the treatment for A. japonicus infected with the SUS that caused by Vibrio harveyi. We found that B. licheniformis significantly reduced the number of infected sea cucumbers 5 days and 7 days after the treatment (group B), compared to those without B. licheniformis treatment (group C) (P < 0.001; P < 0.001). Further, the sea cucumbers fed B. licheniformis had significantly lower mortality at the end of the experiment (<10%) than that of those without the B. licheniformis treatment (>60%) (P < 0.001). These results suggest that the treatment of B. licheniformis is an effective method to reduce the mass mortality resulted from SUS in sea cucumber aquaculture. Further, 3-5 days of treatment significantly improved the adverse symptoms of SUS on the physiology and behavior of sea cucumbers, including the righting behavior, adhesion behavior, food consumption, fecal output and mobility. This indicates B. licheniformis treatment has the advantage in the recovery of sea cucumbers after SUS. Moreover, there was no significant difference observed in the physiology and behavior of sea cucumbers between the SUS infected sea cucumbers after the 7-day treatment of B. licheniformis and the healthy individuals. SUS infected sea cucumbers effectively returned to a stage of normalcy. Further, we found a significantly lower infected rate in sea cucumbers exposed to the culture water of group B (∼5%) than that of those in exposure to the culture water of group C (∼60%). This indicates that the treatment of B. licheniformis efficiently controls the residual pathogenicity of SUS in culture water. The present study demonstrated the effectiveness of B. licheniformis treatment as an environmentally friendly approach to reducing mortality, improving symptoms, and controlling residual pathogenicity in sea cucumber aquaculture.


Subject(s)
Bacillus licheniformis , Sea Cucumbers , Stichopus , Humans , Animals , Virulence , Water
3.
Sci Rep ; 13(1): 5361, 2023 04 01.
Article in English | MEDLINE | ID: mdl-37005442

ABSTRACT

Mass mortality and low growth highly decrease the production efficiency and sustainable aquaculture development of the sea cucumber Apostichopus japonicus in summer. Sea urchin feces was proposed to address the summer problems. A laboratory study was conducted for ~ 5 weeks to investigate survival, food consumption, growth and resistance ability of A. japonicus cultured with the feces of sea urchins fed kelp (KF feces, group KF), the feces of sea urchins fed prepared feed (FF feces, group FF), and the prepared sea cucumber feed (group S) at high temperature (25 °C). The sea cucumbers of group KF had better survival (100%) than those of the group FF (~ 84%), higher CTmax (35.9 °C) than those of the group S (34.5 °C), and the lowest skin ulceration proportion (0%) when  they were exposed to an infectious solution among the three groups. These results suggest that the feces of sea urchins fed kelp is a promising diet for improving the survival and enhancing the resistance in A. japonicus aquaculture in summer. Sea cucumbers fed significantly less FF feces after 24 h of ageing than the fresh FF feces, suggesting this kind of feces became unsuitable for A. japonicus in a short time (within 48 h). However, the 24 h of ageing at 25 °C for the high fiber feces of sea urchins fed kelp had no significant effects on the fecal consumption of sea cucumbers. In the present study, both fecal diets provide better individual growth to sea cucumbers than the prepared feed. Yet, the feces of sea urchins fed kelp provided the highest weight gain rate (WGR) to sea cucumbers. Therefore, the feces of sea urchins fed kelp is a promising food to reduce the mortality, to address the problems of summer, and to achieve higher efficiency in A. japonicus aquaculture in summer.


Subject(s)
Sea Cucumbers , Stichopus , Animals , Immunity, Innate , Dietary Supplements , Feces , Sea Urchins
SELECTION OF CITATIONS
SEARCH DETAIL