Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Biochem Soc Trans ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747731

ABSTRACT

The zinc finger protein of the cerebellum (ZIC) family comprises five members (ZIC1-5), homologous with the odd-paired (OPA) gene in Drosophila melanogila. These transcription factors contain five Cys2His zinc finger domains, constituting one of the most abundant transcription factor families in human cells. ZIC proteins significantly contribute to transcriptional regulation and chromatin remodeling. As a member of the ZIC family, ZIC5 is essential for animal growth and development. Numerous studies have investigated the connection between ZIC proteins and cancer as well as tumor metastases in recent years. Many studies have found that within tumor tissues, the transcription and translation processes increase the expression of ZIC5 which is linked to tumor aggressiveness. This review aims to provide an objective summary of the impact of ZIC5 on tumor metastasis and consider the potential application of ZIC5 targets in both tumor therapy and the early detection of cancer.

2.
Bioact Mater ; 39: 74-105, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38783927

ABSTRACT

Mg is a typical biodegradable metal widely used for biomedical applications due to its considerable mechanical properties and bioactivity. Biodegradable polymers have attracted great interest owing to their favorable processability and inclusiveness. However, it is challenging for the degradation rates of Mg or polymers to precisely match tissue repair processes, and the significant changes in local pH during degradation hinder tissue repair. The concept of combining Mg with polymers is proposed to overcome the shortcomings of materials, aiming to meet repair needs from various aspects such as mechanics and biology. Therefore, it is essential to systematically understand the behavior of biodegradable Mg/polymer composite (BMPC) from the design, manufacturing, mechanical properties, degradation, and biological effects. In this review, we elaborate on the design concepts and manufacturing strategies of high-strength BMPC, the "structure-function" relationship between the microstructures and mechanical properties of composites, the variation in the degradation rate due to endogenous and exogenous factors, and the establishment of advanced degradation research platform. Additionally, the interplay among composite components during degradation and the biological function of composites under non-responsive/stimuli-responsive platforms are also discussed. Finally, we hope that this review will benefit future clinical applications of "structure-function" integrated biomaterials.

3.
Front Pharmacol ; 15: 1353293, 2024.
Article in English | MEDLINE | ID: mdl-38694907

ABSTRACT

Introduction: We investigated trends in the use of therapeutic drugs for pregnant patients with rheumatic diseases in nine Chinese cities (Beijing, Chengdu, Guangzhou, Harbin, Hangzhou, Shanghai, Shenyang, Tianjin, and Zhengzhou) to provide a reference for drug use in clinic. Methods: Outpatient prescription data for pregnant patients diagnosed with rheumatic diseases in nine cities across China in 2016-2021 were extracted from the Hospital Prescription Cooperation Project of the Hospital Pharmacy Professional Committee of the Chinese Pharmaceutical Association. A retrospective analysis was then performed, incorporating data on patient age, defined daily doses (DDDs), defined daily cost (DDC), and other metrics. Results: In 2016-2020, more than 70% of the pregnant patients diagnosed with rheumatic diseases in these nine cities were 25 to < 35 years of age. The most common rheumatic diseases during pregnancy were antiphospholipid antibody syndrome (APS) and systemic lupus erythematosus (SLE). In terms of the routine use of daily therapeutic drugs, the DDDs of low molecular weight heparins (LMWHs), glucocorticoids, and immunosuppressive agents dominated the top three. Intravenous immunoglobulin (IVIG) and tumor necrosis factor inhibitors (TNFi) have been used since 2019 and had been in the forefront of the DDC. Conclusion: The number and total cost of prescriptions for therapeutic drugs of pregnancy complicated by rheumatic diseases, have increased significantly over the study interval. Conventional therapeutic drugs, especially glucocorticoids, LMWHs, and hydroxychloroquine were the most widely used drugs in pregnant patients with rheumatic diseases. However, IVIG and TNFi, relatively high cost, have shown gradual increases in clinical use since 2019.

4.
Sci Data ; 11(1): 352, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589374

ABSTRACT

We assembled the first gridded burned area (BA) database of national wildfire data (ONFIRE), a comprehensive and integrated resource for researchers, non-government organisations, and government agencies analysing wildfires in various regions of the Earth. We extracted and harmonised records from different regions and sources using open and reproducible methods, providing data in a common framework for the whole period available (starting from 1950 in Australia, 1959 in Canada, 1985 in Chile, 1980 in Europe, and 1984 in the United States) up to 2021 on a common 1° × 1° grid. The data originate from national agencies (often, ground mapping), thus representing the best local expert knowledge. Key opportunities and limits in using this dataset are discussed as well as possible future expansions of this open-source approach that should be explored. This dataset complements existing gridded BA data based on remote sensing and offers a valuable opportunity to better understand and assess fire regime changes, and their drivers, in these regions. The ONFIRE database can be freely accessed at https://zenodo.org/record/8289245 .

5.
Mol Biol Rep ; 51(1): 512, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622483

ABSTRACT

Bacterial enteritis has a substantial role in contributing to a large portion of the global disease burden and serves as a major cause of newborn mortality. Despite advancements gained from current animal and cell models in improving our understanding of pathogens, their widespread application is hindered by apparent drawbacks. Therefore, more precise models are imperatively required to develop more accurate studies on host-pathogen interactions and drug discovery. Since the emergence of intestinal organoids, massive studies utilizing organoids have been conducted to study the pathogenesis of bacterial enteritis, revealing new mechanisms and validating established ones. In this review, we focus on the advancements of several bacterial pathogenesis mechanisms observed in intestinal organoid/enteroid models, exploring the host response and bacterial effectors during the infection process. Finally, we address the features that warrant additional investigation or could be enhanced in existing organoid models in order to guide future research endeavors.


Subject(s)
Bacterial Infections , Enteritis , Animals , Intestines/microbiology , Bacteria , Organoids
6.
Glob Chang Biol ; 30(3): e17221, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38450880

ABSTRACT

Communities interspersed throughout the Canadian wildland are threatened by fires that have become bigger and more frequent in some parts of the country in recent decades. Identifying the fireshed (source area) and pathways from which wildland fire may ignite and spread from the landscape to a community is crucial for risk-reduction strategy and planning. We used outputs from a fire simulation model, including fire polygons and rate of spread, to map firesheds, fire pathways and corridors and spread distances for 1980 communities in the forested areas of Canada. We found fireshed sizes are larger in the north, where the mean distances between ecumene and fireshed perimeters were greater than 10 km. The Rayleigh Z test indicated that simulated fires around a large proportion of communities show significant directional trends, and these trends are stronger in the Boreal Plains and Shields than in the Rocky Mountain area. The average distance from which fire, when spreading at the maximum simulated rate, could reach the community perimeter was approximately 5, 12 and 18 km in 1, 2 and 3 days, respectively. The average daily spread distances increased latitudinally, from south to north. Spread distances were the shortest in the Pacific Maritime, Atlantic Maritime and Boreal Plains Ecozones, implying lower rates of spread compared to the rest of the country. The fire corridors generated from random ignitions and from ignitions predicted from local fire history differ, indicating that factors other than fuel (e.g. fire weather, ignition pattern) play a significant role in determining the direction that fires burn into a community.


Subject(s)
Disasters , Wildfires , Canada , Computer Simulation , Forests
7.
Nature ; 627(8003): 321-327, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38480963

ABSTRACT

Overnight fires are emerging in North America with previously unknown drivers and implications. This notable phenomenon challenges the traditional understanding of the 'active day, quiet night' model of the diurnal fire cycle1-3 and current fire management practices4,5. Here we demonstrate that drought conditions promote overnight burning, which is a key mechanism fostering large active fires. We examined the hourly diurnal cycle of 23,557 fires and identified 1,095 overnight burning events (OBEs, each defined as a night when a fire burned through the night) in North America during 2017-2020 using geostationary satellite data and terrestrial fire records. A total of 99% of OBEs were associated with large fires (>1,000 ha) and at least one OBE was identified in 20% of these large fires. OBEs were early onset after ignition and OBE frequency was positively correlated with fire size. Although warming is weakening the climatological barrier to night-time fires6, we found that the main driver of recent OBEs in large fires was the accumulated fuel dryness and availability (that is, drought conditions), which tended to lead to consecutive OBEs in a single wildfire for several days and even weeks. Critically, we show that daytime drought indicators can predict whether an OBE will occur the following night, which could facilitate early detection and management of night-time fires. We also observed increases in fire weather conditions conducive to OBEs over recent decades, suggesting an accelerated disruption of the diurnal fire cycle.


Subject(s)
Darkness , Droughts , Wildfires , Droughts/statistics & numerical data , Ecosystem , North America , Wildfires/statistics & numerical data
8.
J Cell Physiol ; 239(5): e31216, 2024 May.
Article in English | MEDLINE | ID: mdl-38327128

ABSTRACT

c-Fos, a member of the immediate early gene, serves as a widely used marker of neuronal activation induced by various types of brain damage. In addition, c-Fos is believed to play a regulatory role in DNA damage repair. This paper reviews the literature on c-Fos' involvement in the regulation of DNA damage repair and indicates that genes of the Fos family can be induced by various forms of DNA damage. In addition, cells lacking c-Fos have difficulties in DNA repair. c-Fos is involved in tumorigenesis and progression as a proto-oncogene that maintains cancer cell survival, which may also be related to DNA repair. c-Fos may impact the repair of DNA damage by regulating the expression of downstream proteins, including ATR, ERCC1, XPF, and others. Nonetheless, the underlying mechanisms necessitate further exploration.


Subject(s)
DNA Damage , DNA Repair , Proto-Oncogene Mas , Proto-Oncogene Proteins c-fos , Humans , DNA Repair/genetics , DNA Damage/genetics , Proto-Oncogene Proteins c-fos/metabolism , Proto-Oncogene Proteins c-fos/genetics , Animals , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism
9.
Biomater Adv ; 158: 213767, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38227990

ABSTRACT

Biodegradable Mg/polymer composite fibers offer a promising therapeutic option for tissue injury because of bioactive Mg2+ and biomimetic microstructure. However, current studies are limited to the contribution of Mg2+ and the single microstructure. In this study, we designed Mg/poly (lactic-co-glycolic acid) (Mg/PLGA) composite microfibers that significantly enhanced angiogenesis and tissue regeneration synergistically by Mg2+ and self-sculptured microstructure, due to spontaneous in situ microphase separation in response to the weakly alkaline microenvironment. Our composite microfiber patch exhibited superior performance in the adhesion, spreading, and angiogenesis functions of human umbilical vein endothelial cells (HUVECs) due to the joint contribution of the hierarchically porous microstructure and Mg2+. Genomics and proteomics analyses revealed that the Mg/PLGA composite microfibers activated the cell focal adhesion and angiogenesis-related signaling pathways. Furthermore, the repair of typical soft tissue defects, including refractory urethral wounds and easily healed skin wounds, validated that our Mg/PLGA composite microfiber patch could provide favorable surface topography and ions microenvironment for tissue infiltration and accelerated revascularization. It could cause rapid urethral tissue regeneration and recovery of rabbit urethral function within 6 weeks and accelerate rat skin wound closure within 16 days. This work provides new insight into soft tissue regeneration through the bioactive alkaline substance/block copolymer composites interactions.


Subject(s)
Skin , Wound Healing , Rats , Humans , Animals , Rabbits , Human Umbilical Vein Endothelial Cells , Porosity , Hydrogen-Ion Concentration
10.
J Cell Physiol ; 239(4): e31187, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219047

ABSTRACT

Neural stem cells (NSCs) are pluripotent stem cells with the potential to differentiate into a variety of nerve cells. NSCs are susceptible to both intracellular and extracellular insults, thus causing DNA damage. Extracellular insults include ultraviolet, ionizing radiation, base analogs, modifiers, alkyl agents and others, while intracellular factors include Reactive oxygen species (ROS) radicals produced by mitochondria, mismatches that occur during DNA replication, deamination of bases, loss of bases, and more. When encountered with DNA damage, cells typically employ three coping strategies: DNA repair, damage tolerance, and apoptosis. NSCs, like many other stem cells, have the ability to divide, differentiate, and repair DNA damage to prevent mutations from being passed down to the next generation. However, when DNA damage accumulates over time, it will lead to a series of alterations in the metabolism of cells, which will cause cellular ageing. The ageing and exhaustion of neural stem cell will have serious effects on the body, such as neurodegenerative diseases. The purpose of this review is to examine the processes by which DNA damage leads to NSCs ageing and the mechanisms of DNA repair in NSCs.


Subject(s)
Cellular Senescence , DNA Damage , Neural Stem Cells , DNA Repair , Neural Stem Cells/physiology , Neurons/physiology , Cellular Senescence/genetics , Humans
11.
ACS Biomater Sci Eng ; 10(2): 1062-1076, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38245905

ABSTRACT

Magnesium is a revolutionary biomaterial for orthopedic implants, owing to its eminent mechanical properties and biocompatibility. However, its uncontrolled degradation rate remains a severe challenge for its potential applications. In this study, we developed a self-healing micro arc oxidation (MAO) and dicalcium phosphate dihydrate (DCPD) double-passivated coating on a magnesium membrane (Mg-MAO/DCPD) and investigated its potential for bone-defect healing. The Mg-MAO/DCPD membrane possessed a feasible self-repairing ability and good cytocompatibility. In vitro degradation experiments showed that the Mg contents on the coating surface were 0.3, 3.8, 4.1, 6.1, and 7.9% when the degradation times were 0, 1, 2, 3, and 4 weeks, respectively, exhibiting available corrosion resistance. The slow and sustained release of Mg2+ during the degradation process activated extracellular matrix proteins for bone regeneration, accelerating osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). The extract solutions of Mg-MAO/DCPD considerably promoted the activation of the Wnt and PI3K/AKT signaling pathways. Furthermore, the evaluation of the rat skull defect model manifested the outstanding bone-healing efficiency of the Mg-MAO/DCPD membrane. Taken together, the Mg-MAO/DCPD membrane demonstrates an optimized degradation rate and excellent bioactivity and is believed to have great application prospects in bone tissue engineering.


Subject(s)
Calcium Phosphates , Coated Materials, Biocompatible , Magnesium , Rats , Humans , Animals , Magnesium/pharmacology , Coated Materials, Biocompatible/pharmacology , Osteogenesis , Phosphatidylinositol 3-Kinases
12.
ACS Biomater Sci Eng ; 10(1): 537-549, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38065085

ABSTRACT

Commercially available guided bone regeneration (GBR) membranes often exhibit limited mechanical properties or bioactivity, leading to poor performance in repairing bone defects. To surmount this limitation, we developed a Janus structural composite membrane (Mg-MgO/PCL) reinforced by dual Mg (Mg sheets and MgO NPs) by using a combined processing technique involving casting and electrospinning. Results showed that the addition of Mg sheets and MgO NPs enhanced the mechanical properties of the composite membrane for osteogenic space maintenance, specifically tensile strength (from 10.2 ± 1.2 to 50.3 ± 4.5 MPa) and compression force (from 0 to 0.94 ± 0.09 N mm-1), through Mg sheet reinforcement and improved crystallization. The dense cast side of the Janus structure membrane displayed better fibroblast barrier capacity than a single fiber structure; meanwhile, the PCL matrix protected the Mg sheet from severe corrosion due to predeformation. The porous microfibers side supported preosteoblast cell adhesion, enhanced osteogenesis, and angiogenesis in vitro, through the biomimetic extracellular matrix and sustainable Mg2+ release. Furthermore, the Mg-MgO/PCL membrane incorporating 2 wt % MgO NPs exhibited remarkable antimicrobial properties, inducing over 88.75% apoptosis in Staphylococcus aureus. An in vivo experiment using the rat skull defect model (Φ = 5 mm) confirmed that the Mg-MgO/PCL membrane significantly improved new bone formation postsurgery. Collectively, our investigation provides valuable insights into the design of multifunctional membranes for clinical oral GBR application.


Subject(s)
Magnesium Oxide , Polyesters , Rats , Animals , Magnesium Oxide/pharmacology , Polyesters/pharmacology , Polyesters/chemistry , Bone Regeneration , Osteogenesis , Cell Adhesion
13.
Stem Cells Dev ; 33(3-4): 79-88, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38115601

ABSTRACT

The quiescence and activation of adult stem cells are regulated by many kinds of molecular mechanisms, and RNA alternative splicing participates in regulating many cellular processes. However, the relationship between stem cell quiescence and activation regulation and gene alternative splicing has yet to be studied. In this study, we aimed to elucidate the regulation of stem cell quiescence and activation by RNA alternative splicing. The upregulated genes in activated mouse neural stem cells (NSCs), muscle stem cells, and hematopoietic stem cells were collected for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis. The genes from three tissue stem cells underwent Venn analysis. The mouse NSCs were used for quiescence and reactivation induction. The immunostaining of cell-specific markers was performed to identify cell properties. The reverse transcription-polymerase chain reaction and western blotting were used to detect the gene expression and protein expression, respectively. We found that the upregulated genes in activated stem cells from three tissues were all enriched in RNA splicing-related biological processes; the upregulated RNA splicing-related genes in activated stem cells displayed tissue differences; mouse NSCs were successfully induced into quiescence and reactivation in vitro without losing differentiation potential; serine and arginine-rich splicing factor 3 (Srsf3) was highly expressed in the activated mouse NSCs, and the overexpression of SRSF3 protein promoted the activation of quiescent mouse NSCs and increased the neural cell production. Our data indicate that the alternative splicing change may underline the transition of quiescence and activation of stem cells. The manipulation of the splicing factor may benefit tissue repair by promoting the activation of quiescent stem cells.


Subject(s)
Arginine , Neural Stem Cells , Animals , Mice , Neural Stem Cells/metabolism , RNA/metabolism , RNA Splicing Factors/metabolism , Serine
14.
Se Pu ; 41(12): 1095-1105, 2023 Dec.
Article in Chinese | MEDLINE | ID: mdl-38093539

ABSTRACT

Perfluoroalkyl substances (PFASs) have become a new food-safety problem. Dietary intake is a major pathway of human exposure to PFASs. Chinese mitten crab (Eriocheir sinensis) is a high-end aquaculture product popular among consumers in China. Conventional extraction methods for PFASs are cumbersome and time consuming, and result in incomplete purification; thus, this technique does not meet the requirements for PFAS detection. Herein, an analytical strategy was established for the rapid detection of 14 PFASs in Chinese mitten crab based on multi-plug filtration cleanup (m-PFC) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The carbon-chain length of the 14 PFASs analyzed in this study ranged from 4 to 14, and they are perfluorobutanoic acid (PFBA), perfluoro-n-pentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA), perfluorotetradecanoic acid (PFTeDA), perfluoro-1-butane sulfonic acid (PFBS), perfluoro-1-hexane sulfonic acid (PFHxS), perfluoro-1-octane sulfonic acid (PFOS), and perfluoro-1-decanesulfonate (PFDS). The m-PFC column was prepared using carboxy-based multiwalled carbon nanotubes, and used to reduce the interference of sample impurities. The samples were extracted with 5 mL of 0.1% formic acid aqueous solution, 15 mL of acetonitrile and extraction salt (2 g Na2SO4 and 2 g NaCl). The supernatant (10 mL) was purified using the m-PFC column, concentrated to near dryness under nitrogen, and then redissolved in 1 mL of methanol. Finally, the sample solution was filtered through a 0.22 µm polypropylene syringe filter for UPLC-MS/MS analysis. The target analytes were separated using a Shimadzu Shim-pack G1ST-C18 chromatographic column (100 mm×2.1 mm, 2 µm) using methanol (A) and 5 mmol/L ammonium acetate aqueous solution (B) as the mobile phases via gradient elution. The linear gradient program were as follows: 0-0.5 min, 10%A-35%A; 0.5-3 min, 35%A-60%A; 3-5 min, 60%A-100%A; 5-6.5 min, 100%A; 6.5-7 min, 100%A-10%A. The target analytes were analyzed using negative electrospray ionization in multiple-reaction monitoring mode, and quantitative analysis was performed using the internal standard method. In this study, we optimized the mobile-phase system as well as the extraction solvent, time, volume, and salt. The 14 PFASs exhibited good peak shapes and sensitivities when the 5 mmol/L ammonium acetate solution-methanol system was used as the mobile phase. Compared with acetonitrile or methanol alone, the extraction efficiencies of the 14 PFASs were significantly improved when 5 mL of 0.1% formic acid aqueous solution was added, followed by 15 mL of acetonitrile. The extraction efficiencies of the 14 PFASs did not differ significantly when the extraction time was within 3-15 min. The extraction salt (MgSO4, Na2SO4, NaCl, (NH4)2SO4, and Na2SO4+NaCl) significantly affected the extraction efficiencies of the 14 PFASs. The highest extraction efficiencies of the 14 PFASs, which ranged from 47.9% to 121.9%, were obtained when Na2SO4+NaCl was used as the extraction salt. Under the optimal experimental conditions, good linearities (R2=0.998-0.999) were obtained for seven PFASs (PFBS, PFHxA, PFHpA, PFHxS, PFDA, PFDoDA, PFTeDA) at 0.10-100 µg/L, and seven PFASs (PFBA, PFPeA, PFOA, PFOS, PFNA, PFUnDA, PFDS) at 0.50-100 µg/L. The average spiked recoveries for the 14 PFASs in Chinese mitten crabs at three levels ranged from 73.1% to 120%, with relative standard deviations (RSDs) in the range of 1.68%-19.5%(n=6). The limits of detection (LODs) and quantification (LOQs) of the 14 PFASs were in the range of 0.03-0.15 and 0.10-0.50 µg/kg, respectively. The developed method was applied to the analysis of crab samples collected from three farms in Shanghai, and PFASs with total concentrations of 3.52-37.77 µg/kg were detected in all samples. The detection frequencies for PFDA, PFUnDA, PFDoDA, PFTeDA, and PFOS were 100%. PFDA, PFUnDA, PFOS, and PFDoDA were the most abundant congeners, accounting for 31.2%, 30.6%, 15.0%, and 10.9%, respectively, of the 14 PFASs detected. The proposed method is simple, efficient, accurate, and suitable for the rapid analysis of 14 PFASs in Chinese mitten crabs.


Subject(s)
Fluorocarbons , Nanotubes, Carbon , Humans , Tandem Mass Spectrometry , Chromatography, Liquid , Sodium Chloride/analysis , Methanol , Nanotubes, Carbon/analysis , China , Fluorocarbons/analysis , Sulfonic Acids/analysis , Acetonitriles , Chromatography, High Pressure Liquid , Solid Phase Extraction
15.
J Mol Cell Biol ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37791390

ABSTRACT

Meningioma is one of the most common primary neoplasms in the central nervous system, whereas there is still no specific molecularly targeted therapy that has been approved for the clinical treatment of aggressive meningiomas. There is therefore an urgent demand to decrypt the biological and molecular landscape of malignant meningioma. Here, through the in-silica prescreening and 10-year follow-up of 445 meningioma patients, we uncovered that CBX7 is progressively decreased with malignancy grade and neoplasia stage in meningioma and a high CBX7 expression level predicts a favorable prognosis in meningioma patients. CBX7 restoration significantly induces cell cycle arrest and inhibits meningioma cell proliferation. iTRAQ-based proteomics analysis indicated that CBX7 restoration triggers the metabolic shift from glycolysis to oxidative phosphorylation. The mechanistic study demonstrated that CBX7 promotes the proteasome-dependent degradation of c-MYC proteins by transcriptionally inhibiting the expression of a c-MYC deubiquitinase, USP44, which attenuates c-MYC-mediated transactivation of LDHA transcripts and further inhibits glycolysis and subsequent cellular proliferation. More importantly, the functional role of CBX7 was further confirmed in both subcutaneous and orthotopic meningioma xenografts mouse models and human meningioma patients. Together, our results shed light on the critical role of CBX7 during meningioma malignancy progression and identified the CBX7/USP44/c-MYC/LDHA axis as a promising therapeutic target against meningioma progression.

16.
Anal Methods ; 15(36): 4700-4709, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37675465

ABSTRACT

A sensitive and reliable method for determining 25 polybrominated diphenyl ethers (PBDEs) in Chinese mitten crabs and their ecosystems ranging from the growing environment to edible feed by gas chromatography coupled to triple quadrupole mass spectrometry with advanced electron ionization (GC-AEI-MS/MS) was developed and validated. Accelerated solvent extraction (ASE) and liquid-liquid extraction were used to extract solid and water samples, respectively. On the basis of a traditional acid-base silica column, deactivated silica was added and n-hexane elution was used to increase the effect of separation and purification. Two oven temperature programs were applied to achieve good separation of low brominated congeners and increase the sensitivity of high brominated congeners. The method provided good linearity (>0.9996). The recoveries of four matrices were in the range of 82-115% and the method quantification limits (MQLs) in crabs, feed, sediment and water ranged from 0.36-6 pg per g wet weight, 0.69-22.29 pg per g dry weight, 1.02-25.26 pg per g dry weight, and 2.43-40.14 pg L-1, respectively. The proposed method was used for ten samples from two aquatic sites and PBDEs were detected in Chinese mitten crabs, commercial feed and sediment, with the highest in crabs. This analytical technique can be used to monitor the content and the accumulation behavior of PBDEs in Chinese mitten crab ecosystems or other aquaculture systems.


Subject(s)
Brachyura , Halogenated Diphenyl Ethers , Ecosystem , Gas Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Animals
17.
Analyst ; 148(19): 4710-4720, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37622207

ABSTRACT

Raman hyperspectral imaging is an effective method for label-free imaging with chemical specificity, yet the weak signals and correspondingly long integration times have hindered its wide adoption as a routine analytical method. Recently, low resolution Raman imaging has been proposed to improve the spectral signal-to-noise ratio, which significantly improves the speed of Raman imaging. In this paper, low resolution Raman spectroscopy is combined with "context-aware" matrix completion, where regions of the sample that are not of interest are skipped, and the regions that are measured are under-sampled, then reconstructed with a low-rank constraint. Both simulations and experiment show that low-resolution Raman boosts the speed and image quality of the computationally-reconstructed Raman images, allowing deeper sub-sampling, reduced exposure time, and an overall >10-fold improvement in imaging speed, without sacrificing chemical specificity or spatial image quality. As the method utilizes traditional point-scan imaging, it retains full confocality and is "backwards-compatible" with pre-existing traditional Raman instruments, broadening the potential scope of Raman imaging applications.

18.
Toxics ; 11(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37368600

ABSTRACT

In order to acquire scientific evidence for the application of thiamethoxam (TMX) in Agaricus bisporus cultivation, residue and dissipation experiments for field trials were performed with the application of TMX in compost and casing soil, respectively. An effective QuEChERS method was established to analyze TMX and its two metabolites, clothianidin (CLO) and thiamethoxam-urea (TMX-urea), in compost, casing soil, and fruiting bodies. The results indicated that the TMX dissipation half-lives (t1/2) at dosages of 10 and 50 mg kg-1 were 19.74 d (day) and 28.87 d in compost and 33.54 d and 42.59 d in casing soil, individually. TMX, CLO, and TMX-urea were observed after TMX application in compost and casing soil. For TMX applied to the casing soil, only TMX residues were detected in fruiting bodies with bioconcentration factors (BCFs) of 0.0003~0.0009. In addition, both the chronic risk quotient (RQ) and acute risk quotient (HQ) values of TMX in fruiting bodies were far less than 1, which means the dietary health risks to humans were acceptable. However, in the TMX application to the compost, these analytes were not detected in the fruiting bodies. This suggested that the application of TMX in compost was safer than in casing soil during A. bisporus cultivation.

19.
J Mol Med (Berl) ; 101(8): 931-945, 2023 08.
Article in English | MEDLINE | ID: mdl-37380866

ABSTRACT

Organoids have been developed in the last decade as a new research tool to simulate organ cell biology and disease. Compared to traditional 2D cell lines and animal models, experimental data based on esophageal organoids are more reliable. In recent years, esophageal organoids derived from multiple cell sources have been established, and relatively mature culture protocols have been developed. Esophageal inflammation and cancer are two directions of esophageal organoid modeling, and organoid models of esophageal adenocarcinoma, esophageal squamous cell carcinoma, and eosinophilic esophagitis have been established. The properties of esophageal organoids, which mimic the real esophagus, contribute to research in drug screening and regenerative medicine. The combination of organoids with other technologies, such as organ chips and xenografts, can complement the deficiencies of organoids and create entirely new research models that are more advantageous for cancer research. In this review, we will summarize the development of tumor and non-tumor esophageal organoids, the current application of esophageal organoids in disease modeling, regenerative medicine, and drug screening. We will also discuss the future prospects of esophageal organoids.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Animals , Humans , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma/metabolism , Organoids , Regenerative Medicine
20.
Small ; 19(42): e2301638, 2023 10.
Article in English | MEDLINE | ID: mdl-37345962

ABSTRACT

Developing composite materials with optimized mechanics, degradation, and bioactivity for bone regeneration has long been a crucial mission. Herein, a multifunctional Mg/Poly-l-lactic acid (Mg/PLLA) composite membrane based on the "materials plain" concept through the accumulative rolling (AR) method is proposed. Results show that at a rolling ratio of 75%, the comprehensive mechanical properties of the membrane in the rolling direction are self-reinforced significantly (elongation at break ≈53.2%, tensile strength ≈104.0 MPa, Young's modulus ≈2.13 GPa). This enhancement is attributed to the directional arrangement and increased crystallization of PLLA molecular chains, as demonstrated by SAXS and DSC results. Furthermore, the AR composite membrane presents a lamellar heterostructure, which not only avoids the accumulation of Mg microparticles (MgMPs) but also regulates the degradation rate. Through the contribution of bioactive MgMPs and their photothermal effect synergistically, the membrane effectively eliminates bacterial infection and accelerates vascularized bone regeneration both in vitro and in vivo. Notably, the membrane exhibits outstanding rat skull bone regeneration performance in only 4 weeks, surpassing most literature reports. In short, this work develops a composite membrane with a "one stone, four birds" effect, opening an efficient avenue toward high-performance orthopedic materials.


Subject(s)
Bone Regeneration , Polyesters , Rats , Animals , Scattering, Small Angle , X-Ray Diffraction , Polyesters/chemistry , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL
...