Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Mar Drugs ; 22(5)2024 May 18.
Article in English | MEDLINE | ID: mdl-38786621

ABSTRACT

Alginate oligosaccharides (AOS), products of alginate degradation by endotype alginate lyases, possess favorable biological activities and have broad applications. Although many have been reported, alginate lyases with homogeneous AOS products and secretory production by an engineered host are scarce. Herein, the alginate lyase AlyC7 from Vibrio sp. C42 was characterized as a trisaccharide-producing lyase exhibiting high activity and broad substrate specificity. With PelB as the signal peptide and 500 mM glycine as the additive, the extracellular production of AlyC7 in Escherichia coli reached 1122.8 U/mL after 27 h cultivation in Luria-Bertani medium. The yield of trisaccharides from sodium alginate degradation by the produced AlyC7 reached 758.6 mg/g, with a purity of 85.1%. The prepared AOS at 20 µg/mL increased the root length of lettuce, tomato, wheat, and maize by 27.5%, 25.7%, 9.7%, and 11.1%, respectively. This study establishes a robust foundation for the industrial and agricultural applications of AlyC7.


Subject(s)
Escherichia coli , Polysaccharide-Lyases , Trisaccharides , Vibrio , Polysaccharide-Lyases/metabolism , Trisaccharides/biosynthesis , Vibrio/enzymology , Substrate Specificity , Alginates , Zea mays , Oligosaccharides
2.
Acta Pharmacol Sin ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684800

ABSTRACT

Ulcerative colitis (UC) is associated with changed dietary habits and mainly linked with the gut microbiota dysbiosis, necroptosis of epithelial cells, and mucosal ulcerations. Liver dysfunction and abnormal level of liver metabolism indices were identified in UC patients, suggesting a close interaction between gut and liver disorders. Methionine-choline deficient diet (MCD) has been shown to induce persistent alterations of gut microbiota and metabolome during hepatitis. In this study we further explored the disease phenotypes in UC patients and investigated whether MCD functioned as a trigger for UC susceptibility. After assessing 88 serum specimens from UC patients, we found significant liver dysfunction and dyslipidemia including abnormal ALT, AST, TG, TC, LDL-c and HDL-c. Liver dysfunction and dyslipidemia were confirmed in DSS-induced colitis mice. We fed mice with MCD for 14 days to cause mild liver damage, and then treated with DSS for 7 days. We found that MCD intake significantly exacerbated the pathogenesis of mucosal inflammation in DSS-induced acute, progressive, and chronic colitis, referring to promotion of mucosal ulcers, colon shortening, diarrhea, inflammatory immune cell infiltration, cytokines release, and abnormal activation of inflammatory macrophages in colon and liver specimens. Intraperitoneal injection of clodronate liposomes to globally delete macrophages dramatically compromised the pathogenesis of MCD-triggering colitis. In addition, MCD intake markedly changed the production pattern of short-chain fatty acids (SCFAs) in murine stools, colons, and livers. We demonstrated that MCD-induced colitis pathogenesis largely depended on the gut microbes and the disease phenotypes could be transmissible through fecal microbiota transplantation (FMT). In conclusion, this study supports the concept that intake of MCD predisposes to experimental colitis and enhances its pathogenesis via modulating gut microbes and macrophages in mice.

3.
Phys Chem Chem Phys ; 26(15): 11738-11745, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38563831

ABSTRACT

High-performance sodium-ion batteries (SIBs) require anode materials with high capacity and fast kinetics. Based on first-principles calculations, we propose BC3N2 and BC3N2/graphene (B/G) heterostructure as potential SIB anode materials. The BC3N2 monolayer exhibits intrinsic metallic behavior. In addition, BC3N2 possesses a low Na+ diffusion barrier (0.15 eV), a high storage capacity (777 mA h g-1), a low open-circuit voltage (0.72 V), and a tiny axial expansion (0.36%). Compared with the BC3N2 monolayer, the B/G heterostructure exhibits a lower diffusion barrier of 0.027 eV, suggesting a much faster diffusion. More importantly, although the B/G heterostructure possesses heavier molar weight, its theoretical capacity (689 mA h g-1) is comparable to that of the BC3N2 monolayer. Based on the above-mentioned properties, we hope both the BC3N2 monolayer and the B/G heterostructure would be promising anodes for SIBs.

4.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1137-1143, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621960

ABSTRACT

The protection, development, and utilization of medicinal plant resources are important cornerstones of maintaining human health. However, due to factors such as the reduction of high-quality land resources, deterioration of ecological environments, and excessive and disorderly resource development, medicinal plant resources are becoming scarce, and some of them are insufficiently supplied. With the proposal of "the Belt and Road" Initiative, the cooperation between China and "the Belt and Road" partners(the countries and regions involved in "the Belt and Road" Initiative)is increasingly close, which provides a new opportunity for carrying out trade of medicinal plant resources and alleviating the problem of imbalance and relative inadequacy of medicinal plant resources in countries. This study first determined the distribution and species information of plant resources in countries and regions involved in "the Belt and Road" Initiative by investigating the database of plant distribution and that of medicinal plant resources. Then, according to the published data from the International Union for Conservation of Nature(IUCN) and the Convention on International Trade in Endangered Species of Wild Fauna and Flora(CITES), this study identified the rare and endangered medicinal plants and the medicinal plants under trade control in countries and regions involved in "the Belt and Road" Initiative and finally sorted out the list of potential medicinal plant resources in countries and regions involved in "the Belt and Road" Initiative that can be used by China. This data resource can not only be used for the overall protection of important endangered species but also scientifically guide the development and utilization of medicinal resources, providing guidance and a theoretical basis for the sustainable development of medicinal plant resources in countries and regions involved in "the Belt and Road" Initiative.


Subject(s)
Plants, Medicinal , Humans , Animals , Commerce , Internationality , Environment , China , Endangered Species
5.
Cell Death Discov ; 10(1): 152, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521771

ABSTRACT

Acute lung injury (ALI) is an acute and progressive hypoxic respiratory failure that could progress to acute respiratory distress syndrome (ARDS) with a high mortality rate, thus immediate medical attention and supportive care are necessary. The pathophysiology of ALI is characterized by the disruption of the alveolar-capillary barrier and activation of neutrophils, leading to lung tissue damage. The receptor-interacting protein kinase 1 (RIPK1) has emerged as a promising target for the treatment of multiple inflammatory diseases, but the role of RIPK1 in the ALI remains poorly understood. In this study, we aimed to figure out the pathological role of RIPK1 in ALI, especially in the pulmonary immune microenvironment involving neutrophils and endothelial cells. In vivo experiments showed that RIPK1 inhibitor protected against lipopolysaccharide (LPS)-induced lung injury in mouse models, with reduced neutrophils and monocytes infiltration in the lungs. Further studies demonstrated that, besides the inhibitory action on necroptosis, RIPK1 inhibitor directly suppressed reactive oxygen species (ROS) generation and inflammatory cytokines secretion from neutrophils. Furthermore, RIPK1 inhibition maintains the barrier function in TNF-α-primed vascular endothelial cells and prevents their activation induced by the supernatant from LPS-stimulated neutrophils. Mechanistically, the aforementioned effects of RIPK1 inhibitor are associated with the NF-κB signaling pathway, which is partially independent of necroptosis inhibition. These results provide new evidence that RIPK1 inhibitor directly regulates the function of neutrophils and endothelial cells, as well as interferes with the interactions between these two cell types, therefore contributing to a better understanding of RIPK1 in ALI and providing a potential avenue for future therapeutic interventions.

6.
Adv Mater ; 36(15): e2310061, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38227292

ABSTRACT

Integrating the advantages of homogeneous and heterogeneous catalysis has proved to be an optimal strategy for developing catalytic systems with high efficiency, selectivity, and recoverability. Supramolecular metal-organic cages (MOCs), assembled by the coordination of metal ions with organic linkers into discrete molecules, have performed solvent processability due to their tunable packing modes, endowing them with the potential to act as homogeneous or heterogeneous catalysts in different solvent systems. Here, the design and synthesis of a series of stable {Cu3} cluster-based tetrahedral MOCs with varied packing structures are reported. These MOCs, as homogeneous catalysts, not only show high catalytic activity and selectivity regardless of substrate size during the CO2 cycloaddition reaction, but also can be easily recovered from the reaction media through separating products and co-catalysts by one-step work-up. This is because that these MOCs have varied solubilities in different solvents due to the tunable packing of MOCs in the solid state. Moreover, the entire catalytic reaction system is very clean, and the purity of cyclic carbonates is as high as 97% without further purification. This work provides a unique strategy for developing novel supramolecular catalysts that can be used for homogeneous catalysis and recycled in a heterogeneous manner.

7.
Phytomedicine ; 125: 155343, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38290230

ABSTRACT

BACKGROUND: Zika virus (ZIKV) is a single-stranded RNA flavivirus transmitted by mosquitoes. Its infection is associated with neurological complications such as neonatal microcephaly and adult Guillain-Barré syndrome, posing a serious threat to the health of people worldwide. Therefore, there is an urgent need to develop effective anti-ZIKV drugs. Atranorin is a lichen secondary metabolite with a wide range of biological activities, including anti-inflammatory, antibacterial and antioxidant, etc. However, the antiviral activity of atranorin and underlying mechanism has not been fully elucidated. PURPOSE: We aimed to determine the anti-ZIKV activity of atranorin in human glioma cell line SNB-19 and investigate the potential mechanism from the perspective of viral life cycle and the host cell functions. METHODS: We first established ZIKV-infected human glioma cells (SNB-19) model and used Western Blot, RT-qPCR, immunofluorescence, fluorescence-activated cell sorting (FACS) and plaque assay to evaluate the anti-ZIKV activity of atranorin. Then we assessed the regulation effect of atranorin on ZIKV induced IFN signal pathway activation by RT-qPCR. Afterward, we introduced time-of-addition assay, viral adsorption assay, viral internalization assay and transferrin uptake assay to define which step of ZIKV lifecycle is influenced by atranorin. Finally, we performed virus infectivity assay, molecular docking and thermal shift assay to uncover the target protein of atranorin on ZIKV. RESULTS: Our study showed that atranorin could protect SNB-19 cells from ZIKV infection, as evidenced by inhibited viral protein expression and progeny virus yield. Meanwhile, atranorin attenuated the activation of IFN signal pathway and downstream inflammatory response that induced by ZIKV infection. The results of time-of-addition assay indicated that atranorin acted primarily by disturbing the viral entry process. After ruling out the effect of atranorin on AXL receptor tyrosine kinase (AXL) dependent virus adsorption and clathrin-mediated endocytosis, we confirmed that atranorin directly targeted the viral envelope protein and lowered ZIKV infectivity by thermal shift assay and virus infectivity assay respectively. CONCLUSION: We found atranorin inhibits ZIKV infection in SNB-19 cells via targeting ZIKV envelope protein. Our study provided an experimental basis for the further development of atranorin and a reference for antiviral drug discovery from natural resources.


Subject(s)
Glioblastoma , Hydroxybenzoates , Zika Virus Infection , Zika Virus , Animals , Infant, Newborn , Humans , Zika Virus Infection/drug therapy , Zika Virus Infection/metabolism , Zika Virus/physiology , Viral Envelope Proteins , Glioblastoma/drug therapy , Molecular Docking Simulation , Virus Replication , Cell Line
8.
Phys Chem Chem Phys ; 25(42): 29224-29232, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37873573

ABSTRACT

Lithium-ion batteries (LIBs) remain irreplaceable for clean energy storage applications. The intrinsic metallic nature of penta-SiCN ensures its promising application in the electrodes of LIBs. Using first-principles calculations, we evaluate the performance of the intrinsic metallic penta-SiCN monolayer as the anode material for LIBs. Penta-SiCN exhibits a low diffusion energy barrier (0.107 eV) for Li atom migration on Si18C18N18, while the diffusion energy barrier for vacancy migration on Li17Si18C18N18 is only 0.006 eV. Additionally, penta-SiCN possesses a high theoretical capacity of 1485.98 mA h g-1, average open-circuit voltage of 0.97 V, and small volume expansion of 1%. Remarkably, penta-SiCN exhibits robust wettability towards the electrolytes (solvent molecules and metal salts) widely used in commercial LIBs, indicating the excellent compatibility in electrode applications. These intriguing theoretical findings make penta-SiCN a high performance anode material for LIBs.

9.
Talanta ; 265: 124880, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37393713

ABSTRACT

A heteropore covalent organic framework incorporated silicone tube (S-tube@PDA@COF) was used as adsorbent to purify the matrices in vegetable extracts. The S-tube@PDA@COF was fabricated by a facile in-situ growth method and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and N2 adsorption-desorption. The as-prepared composite exhibited high removal efficiency of phytochromes and recovery (81.13-116.62%) of 15 chemical hazards from 5 representative vegetable samples. This study opens a promising avenue toward the facile synthesis of covalent organic frameworks (COFs)-derived silicone tubes for streamline operation in food sample pretreatment.

10.
Food Chem ; 426: 136593, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37348401

ABSTRACT

Blueberries with 20%, 30%, and 40% weight loss were used for winemaking, aiming to explore the feasibility of applying postharvest dehydration for improving blueberry wine aroma. Postharvest dehydration decreased the titratable acidity of blueberries and their resultant wines. Total anthocyanins and phenols in blueberries with 30% weight loss were increased by 25.9% and 16.1%, respectively, due to concentration effects, while further dehydration resulted in a decline. Similar trends were observed in blueberry wines. Moderate postharvest dehydration increased total terpenes, benzeneacetaldehyde and phenylethyl alcohol, ethyl butanoate, methyl salicylate, 1-hexanol, and γ-nonalactone content in blueberries and wines, which could enhance the floral, fruity, and sweet notes of blueberry wines. Wines made from blueberries under severe dehydration (40% weight loss) had the lowest overall aroma score, which was related to the higher content of 4-ethyl-phenol and 4-ethylguaiacol. In conclusion, moderate postharvest dehydration benefited the aroma enhancement of blueberry wine.


Subject(s)
Blueberry Plants , Wine , Humans , Wine/analysis , Anthocyanins/analysis , Dehydration , Odorants/analysis
11.
Theranostics ; 13(8): 2515-2530, 2023.
Article in English | MEDLINE | ID: mdl-37215579

ABSTRACT

Background: Capillary dysfunction has been implicated in a series of life- threatening vascular diseases characterized by pericyte and endothelial cell (EC) degeneration. However, the molecular profiles that govern the heterogeneity of pericytes have not been fully elucidated. Methods: Single-cell RNA sequencing was conducted on oxygen-induced proliferative retinopathy (OIR) model. Bioinformatics analysis was conducted to identify specific pericytes involved in capillary dysfunction. qRT-PCRs and western blots were conducted to detect Col1a1 expression pattern during capillary dysfunction. Matrigel co-culture assays, PI staining, and JC-1 staining was conducted to determine the role of Col1a1 in pericyte biology. IB4 and NG2 staining was conducted to determine the role of Col1a1 in capillary dysfunction. Results: We constructed an atlas of > 76,000 single-cell transcriptomes from 4 mouse retinas, which could be annotated to 10 distinct retinal cell types. Using the sub-clustering analysis, we further characterized retinal pericytes into 3 different subpopulations. Notably, GO and KEGG pathway analysis demonstrated that pericyte sub-population 2 was identified to be vulnerable to retinal capillary dysfunction. Based on the single-cell sequencing results, Col1a1 was identified as a marker gene of pericyte sub-population 2 and a promising therapeutic target for capillary dysfunction. Col1a1 was abundantly expressed in pericytes and its expression was obviously upregulated in OIR retinas. Col1a1 silencing could retard the recruitment of pericytes toward endothelial cells and aggravated hypoxia-induced pericyte apoptosis in vitro. Col1a1 silencing could reduce the size of neovascular area and avascular area in OIR retinas and suppressed pericyte-myofibroblast transition and endothelial-mesenchymal transition. Moreover, Col1a1 expression was up-regulated in the aqueous humor of the patients with proliferative diabetic retinopathy (PDR) or retinopathy of prematurity (ROP) and up-regulated in the proliferative membranes of PDR patients. Conclusions: These findings enhance the understanding of the complexity and heterogeneity of retinal cells and have important implications for future treatment of capillary dysfunction.


Subject(s)
Diabetic Retinopathy , Pericytes , Mice , Animals , Pericytes/metabolism , Endothelial Cells/metabolism , Retina/metabolism , Diabetic Retinopathy/drug therapy , Sequence Analysis, RNA
12.
Food Chem ; 409: 135284, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36586265

ABSTRACT

To investigate the effects of mixed fermentation with T. delbrueckii on aroma profiles of blueberry fermented beverage, five fermentations were conducted: monoculture of T. delbrueckii and S. cerevisiae, respectively; co-inoculation of two strains; sequential inoculation of two strains at time intervals of 24 h and 48 h, respectively. Compared with pure S. cerevisiae fermentation, ethanol level was decreased by up to 1.1% vol., while total anthocyanins were increased by 27.7%-85.0% in mixed fermentations. Marker aroma compounds in different fermentations with relative odor activity values higher than 1were identified. T. delbrueckii significantly decreased volatile acid content (especially acetic acid) by 22.2%-83.3%. Ethyl 3-methylbutanoate, ethyl hexanoate and ethyl octanoate, in pure T. delbrueckii fermentation were significantly decreased, while their concentrations were increased by 1.6-4.4 folds in sequential fermentations. Besides, linalool, rose oxide, benzeneacetaldehyde were significantly increased by sequential fermentation, which was associated with the enhancement of fruity and sweet notes.


Subject(s)
Blueberry Plants , Torulaspora , Wine , Saccharomyces cerevisiae/metabolism , Torulaspora/metabolism , Wine/analysis , Blueberry Plants/metabolism , Anthocyanins/metabolism , Fermentation , Acetic Acid
13.
Food Chem ; 399: 133991, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36037681

ABSTRACT

Fish oil develops particular off-odors, mainly fishy odor, from the oxidation of its characteristic fatty acids, docosahexaenoic (DHA) and eicosapentaenoic (EPA). Anchovy oil (AO) was taken as representative of fish oils. This was compared to three vegetable oils with different fatty acid compositions, i.e. camellia, sunflower and linseed oil, and differential volatile compounds were identified by static-headspace gas-chromatography ion-mobility-spectrometry (SHS-GC-IMS) and orthogonal partial-least-squares discriminant analysis (OPLS-DA) during oxidation at 60 °C. Three groups of differential volatile compounds detected at higher concentrations in the AO were screened out and two compounds, identified as 5-methylfurfural and 2-acetylfuran, were characteristic to the AO and not found in the vegetable oils. They were formed from both EPA and DHA, only present in the AO, and their formation mechanisms were proposed. The contents of 5-methylfurfural and 2-acetylfuran increased linearly with the oxidation time and consequently they could be used as oxidative markers of fish oils.


Subject(s)
Chemometrics , Fish Oils , Fatty Acids/analysis , Fish Oils/chemistry , Furaldehyde/analogs & derivatives , Furans , Gas Chromatography-Mass Spectrometry/methods , Plant Oils
14.
Food Chem ; 404(Pt B): 134724, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36332587

ABSTRACT

The aim of the present research was to explore the development of off-odors in fish oil from the perspective of fatty acid oxidation. It was found that the off-odors elicited by the two major ω-3 PUFAs in fish oil, i.e. DHA and EPA, were different from those by fish oil. Results showed that simultaneous oxidation of fatty acids other than DHA and EPA can be involved. The off-odors of fish oil was successfully simulated by combining oxidized samples of DHA, EPA and sunflower oil. Therefore, oxidation of oleic and linoleic acids also contributed to the off-odors in fish oil. A novel analytical approach that consisted in the combination of gas chromatography-ion mobility spectrometry (GC-IMS) and orthogonal partial least squares discriminant analysis (OPLS-DA) was applied to identify differences in the volatile components between the recombinant oil and the fish oil.


Subject(s)
Fatty Acids, Omega-3 , Fish Oils , Fish Oils/chemistry , Fatty Acids/analysis , Eicosapentaenoic Acid/analysis , Odorants/analysis , Docosahexaenoic Acids/analysis , Gas Chromatography-Mass Spectrometry
16.
Appl Environ Microbiol ; 88(23): e0155922, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36394323

ABSTRACT

Alginate lyases play a vital role in the degradation of alginate, an important marine carbon source. Alginate is a complex macromolecular substrate, and the synergy of alginate lyases is important for the alginate utilization by microbes and the application of alginate lyases in biotechnology. Although many studies have focused on the synergy between different alginate lyases, the synergy between two alginate lyase domains of one alginate lyase has not been reported. Here, we report the synergism between the two catalytic domains of a novel alginate lyase, AlyC6', from the marine alginate-degrading bacterium Vibrio sp. NC2. AlyC6' contains two PL7 catalytic domains (CD1 and CD2) that have no sequence similarity. While both CD1 and CD2 are endo-lyases with the highest activity at 30°C, pH 8.0, and 1.0 M NaCl, they also displayed some different properties. CD1 was PM-specific, but CD2 was PG-specific. Compared with CD2, CD1 had higher catalytic efficiency, but lower substrate affinity. In addition, CD1 had a smaller minimal substrate than CD2, and the products from CD2 could be further degraded by CD1. These distinctions between the two domains enable them to synergize intramolecularly in alginate degradation, resulting in efficient and complete degradation of various alginate substrates. The bioinformatics analysis revealed that diverse alginate lyases have multiple catalytic domains, which are widespread, especially abundant in Flavobacteriaceae and Alteromonadales, which may secret multimodular alginate lyases for alginate degradation. This study provides new insight into bacterial alginate lyases and alginate degradation and is helpful for designing multimodular enzymes for efficient alginate depolymerization. IMPORTANCE Alginate is a major component in the cell walls of brown algae. Alginate degradation is carried out by alginate lyases. Until now, while most characterized alginate lyases contain one single catalytic domain, only a few have been shown to contain two catalytic domains. Furthermore, the synergy of alginate lyases has attracted increasing attention since it plays important roles in microbial alginate utilization and biotechnological applications. Although many studies have focused on the synergy between different alginate lyases, the synergy between two catalytic domains of one alginate lyase has not been reported. Here, a novel alginate lyase, AlyC6', with two functional alginate lyase domains was biochemically characterized. Moreover, the synergism between the two domains of AlyC6' was revealed. Additionally, the distribution of the alginate lyases with multiple alginate lyase domains was investigated based on the bioinformatics analysis. This study provides new insight into bacterial alginate lyases and alginate degradation.


Subject(s)
Polysaccharide-Lyases , Vibrio , Amino Acid Sequence , Polysaccharide-Lyases/metabolism , Vibrio/metabolism , Alginates/metabolism , Substrate Specificity
17.
Inorg Chem ; 61(30): 11866-11878, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35857312

ABSTRACT

Two isomorphic lanthanide compounds {[Ln(ddpp)(H2O)]·CH3CN}n (Ln = Eu and Gd, H4ddpp = 2,5-di(2',4'-dicarboxylphenyl)pyridine) were synthesized. Complex 1-Eu displays ultrahigh acid-base stability and thermal stability. Furthermore, luminescence measurements revealed that 1-Eu could detect quinolone antibiotics with an ultralow limit of detection in aqueous solution. The ratiometric probe properties for sensing antibiotics could be attributed to the incompletely sensitized Eu3+ ion of the ligand. Remarkably, it is interesting that 1-Gd exhibits excellent tetracycline degradation properties under visible light. Ultraviolet-visible diffuse reflectance spectroscopy and valence band X-ray photoelectron spectroscopy were carried out to investigate the photodegradation mechanisms. Moreover, a rational explanation for the fluorescent probe and photocatalysis behavior of these two complexes was also discussed with the assistance of density functional theory calculations.


Subject(s)
Lanthanoid Series Elements , Metal-Organic Frameworks , Anti-Bacterial Agents , Lanthanoid Series Elements/chemistry , Ligands , Luminescent Measurements/methods
18.
Antioxidants (Basel) ; 11(6)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35740028

ABSTRACT

In this study, adzuki bean cultivars including Arari, Chilbopat, Geomguseul, and Hongeon were recently cultivated, and the concentrations of seven individual anthocyanins were determined in their seed coats for the first time. Moreover, the variations of total saponin content (TSC), total phenolic content (TPC), 1,1-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, Trolox equivalent antioxidant capacity (TEAC), and ferric reducing antioxidant power (FRAP) between defatted and undefatted extracts of whole seeds, seed coats, and dehulled seeds of each were analyzed. The anthocyanins were detected only in the black seed-coated cultivars and delphinidin-3-O-glucoside was dominant in both Geomguseul (12.46 mg/g) and Chilbopat (10.88 mg/g) followed by delphinidin-3-O-galactoside. TSC and TPC were in the ranges of 16.20−944.78 mg DE/g and 0.80−57.35 mg GAE/g, respectively, and each decreased in the order of seed coats > whole seeds > dehulled seeds regardless of extract type. The antioxidant activities also showed similar patterns of variation. Geomguseul seed coats outweighed the remaining cultivars in terms of TPC and FRAP activity (p < 0.05). Generally, significant variations of metabolite contents and antioxidant activities were observed between cultivars and across their seed parts (p < 0.05). Thence, black seed-coated adzuki beans could be excellent sources of anthocyanins and antioxidants.

19.
Antiviral Res ; 203: 105347, 2022 07.
Article in English | MEDLINE | ID: mdl-35643150

ABSTRACT

Zika virus (ZIKV) is a flavivirus that causes severe neuropathology in newborns and adults. There is no ZIKV-specific treatment or preventative. Therefore, it is urgent to develop safe and effective anti-ZIKV agents. Hemin, an iron-binding porphyrin, has been authorized by FDA to treat acute porphyria since the 1970s. Here, we aim to evaluate the anti-ZIKV effect of hemin in SNB-19 cells (a human glioma cell line) and explore the underlying mechanism based on the virus life cycle and functions of the host cell. Our study found that hemin has a strong activity to protect SNB-19 cells from ZIKV infection presented by decreased expression of viral proteins and virus yield. Meanwhile, ZIKV infection caused STAT1/IRF1 signaling activation and induced inflammatory responses in SNB-19 cells, which was relieved by hemin treatment. HO-1 has been reported to be potently induced by hemin and play a broad-spectrum antiviral effect. Intriguingly, hemin could still exert anti-ZIKV activity upon HO-1 siRNA treatment. Then, we conducted a time-of-addition assay, the result indicated hemin works mainly by interfering with the virus entry process. Further experiments excluded the effects of hemin on AXL-dependent viral adsorption and clathrin-mediated endocytosis processes. Subsequently, by fluorescence spectroscopy studies, intracellular fusion assay and syncytia formation assay, we revealed that hemin acts on the process of virus-endosome fusion. This study elaborated that hemin could play anti-ZIKV activity by disrupting the virus-endosome fusion process and shed new light on developing novel agents against ZIKV infection.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Chlorocebus aethiops , DNA Viruses , Endosomes , Hemin/pharmacology , Humans , Infant, Newborn , Vero Cells , Virus Internalization , Virus Replication , Zika Virus Infection/metabolism
20.
Chem Commun (Camb) ; 58(52): 7273-7276, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35674204

ABSTRACT

A nickel-catalyzed reductive cyclization was developed to construct the tricyclic core embedded in linoxepin, a cyclolignan with a unique benzoxepin ring. The generated diastereodivergent acetals could be converted to the common unsaturated lactone, thus allowing a racemic synthesis of this molecule after incorporation of the remaining aromatic ring. This strategy with a late-stage installation of the D-ring led to the facile production of several linoxepin analogs as well.


Subject(s)
Lignans , Catalysis , Cyclization , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...