Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 994
Filter
1.
Article in English | MEDLINE | ID: mdl-38994819

ABSTRACT

The serine/threonine kinase polo-like kinase 1 (PLK1) is a master regulator of cell proliferation and contraction, but its physiological role in the lower urinary tract is unknown. We utilized transcriptomic programs of human bladder smooth muscle cells (hBSMCs), 3D bladder spheroid viability assays, and human ureterovesical junction contractility measurements to elucidate the impacts of PLK1 inhibition. This work reveals PLK1 reduction with the selective inhibitor TAK-960 (500 nM) suppresses high K+-evoked contractions of human urinary smooth muscle ex vivo while decreasing urothelial cell viability. Transcriptomic analysis of hBSMCs treated with TAK-960 shows modulation of cell cycle and contraction pathways, specifically through altered expression of Cys2/His2-type zinc finger transcription factors. In bladder spheroids, PLK1 inhibition also suppresses smooth muscle contraction protein filamin. Taken together, these findings establish PLK1 is a critical governor of urinary smooth muscle contraction and urothelial proliferation with implications for lower urinary tract disorders. Targeting PLK1 pharmacologically may therefore offer therapeutic potential to ameliorate hypercontractility and aberrant growth. Further elucidation of PLK1 signaling networks promises new insights into pathogenesis and much needed treatment advances for debilitating urinary symptoms.

2.
Molecules ; 29(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38999007

ABSTRACT

Due to their cost-effectiveness, abundant resources, and suitable working potential, sodium-ion batteries are anticipated to establish themselves as a leading technology in the realm of grid energy storage. However, sodium-ion batteries still encounter challenges, including issues related to low energy density and constrained cycling performance. In this study, a self-supported electrode composed of Prussian white/KetjenBlack/MXene (TK-PW) is proposed. In the TK-PW electrode, the MXene layer is coated with Prussian white nanoparticles and KetjenBlack with high conductivity, which is conducive to rapid Na+ dynamics and effectively alleviates the expansion of the electrode. Notably, the electrode preparation method is uncomplicated and economically efficient, enabling large-scale production. Electrochemical testing demonstrates that the TK-PW electrode retains 74.9% of capacity after 200 cycles, with a discharge capacity of 69.7 mAh·g-1 at 1000 mA·g-1. Furthermore, a full cell is constructed, employing a hard carbon anode and TK-PW cathode to validate the practical application potential of the TK-PW electrode.

3.
ACS Omega ; 9(26): 28228-28236, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38973831

ABSTRACT

Cystatin C (CysC) has been proven to be used to diagnose acute kidney injury (AKI) rapidly and sensitively early. Therefore, it is urgent to develop a sensitive, novel, and rapid method for detecting CysC. In this work, a novel photoelectrochemical (PEC) biosensor was designed for ultrasensitive CysC detection. Ti-MOF@DM-LZU1@Au as a photosensitive material was first modified on the ITO electrode surface. Then, Ab1 and CysC were assembled on the electrode via the specific immunoresponse of an antigen and antibody. Lastly, the conjugate Ab2/l-Cys bilayer/l-Cys-hemin/G-quadruplex with self-catalytic enzyme performance, as a signal amplification approach, could further react with CysC and Ab1, which resulted in a stronger photocurrent. As expected, the constructed PEC sensor realized the ultrasensitive detection of CysC, with a detection range of 10 pg/mL to 16 µg/mL and a lower limit of 8.023 pg/mL. The biosensor had excellent repeatability, selectivity, and stability. Moreover, it can provide a new method for the sensitive and rapid detection of other protein molecules in clinical practice.

4.
Mult Scler Relat Disord ; 88: 105750, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38986172

ABSTRACT

BACKGROUND: The choroid plexus (CP) is suggested to be closely associated with the neuroinflammation of multiple sclerosis (MS). Segmentation based on deep learning (DL) could facilitate rapid and reproducible volume assessment of the CP, which is crucial for elucidating its role in MS. PURPOSE: To develop a reliable DL model for the automatic segmentation of CP, and further validate its clinical significance in MS. METHODS: The 3D UX-Net model (3D U-Net used for comparison) was trained and validated on T1-weighted MRI from a cohort of 216 relapsing-remitting MS (RRMS) patients and 75 healthy subjects. Among these, 53 RRMS with baseline and 2-year follow-up scans formed an internal test set (dataset1b). Another 58 RRMS from multi-center data served as an external test set (dataset2). Dice coefficient was computed to assess segmentation performance. Compare the correlation of CP volume obtained through automatic and manual segmentation with clinical outcomes in MS. Disability and cognitive function of patients were assessed using the Expanded Disability Status Scale (EDSS) and Symbol Digit Modalities Test (SDMT). RESULTS: The 3D UX-Net model achieved Dice coefficients of 0.875 ± 0.030 and 0.870 ± 0.044 for CP segmentation on dataset1b and dataset2, respectively, outperforming 3D U-Net's scores of 0.809 ± 0.098 and 0.601 ± 0.226. Furthermore, CP volumes segmented by the 3D UX-Net model aligned consistently with clinical outcomes compared to manual segmentation. In dataset1b, both manual and automatic segmentation revealed a significant positive correlation between normalized CP volume (nCPV) and EDSS scores at baseline (manual: r = 0.285, p = 0.045; automatic: r = 0.287, p = 0.044) and a negative correlation with SDMT scores (manual: r = -0.331, p = 0.020; automatic: r = -0.329, p = 0.021). In dataset2, similar correlations were found with EDSS scores (manual: r = 0.337, p = 0.021; automatic: r = 0.346, p = 0.017). Meanwhile, in dataset1b, both manual and automatic segmentation revealed a significant increase in nCPV from baseline to follow-up (p < 0.05). The increase of nCPV was more pronounced in patients with disability worsened than stable patients (manual: p = 0.023; automatic: p = 0.018). Patients receiving disease-modifying therapy (DMT) exhibited a significantly lower nCPV increase than untreated patients (manual: p = 0.004; automatic: p = 0.004). CONCLUSION: The 3D UX-Net model demonstrated strong segmentation performance for the CP, and the automatic segmented CP can be directly used in MS clinical practice. CP volume can serve as a surrogate imaging biomarker for monitoring disease progression and DMT response in MS patients.

5.
J Genet Genomics ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38986807

ABSTRACT

Gene therapy has shown significant potential in treating various diseases, particularly inherited blood disorders such as hemophilia, sickle cell disease, and thalassemia. Advances in understanding the regulatory network of disease-associated genes have led to the identification of additional therapeutic targets for treatment, especially for ß-hemoglobinopathies. Erythroid regulatory factor BCL11A offers the most promising therapeutic target for ß-hemoglobinopathies and reduction of its expression using the commercialized gene therapy product Casgevy was approved for use in the UK and USA in 2023. Notably, the emergence of innovative gene editing technologies has further broadened the gene therapy landscape, presenting new possibilities for treatment. Intensive studies indicate that base editing and prime editing, built upon CRISPR technology, enable precise single-base modification in hematopoietic stem cells for addressing inherited blood disorders ex vivo and in vivo. In this review, we present an overview of the current landscape of gene therapies, focusing on clinical research and gene therapy products for inherited blood disorders, evaluation of potential gene targets, and the gene editing tools employed in current gene therapy practices, which provides an insight for the establishment of safer and more effective gene therapy methods for a wider range of diseases in the future.

6.
Neoplasma ; 71(3): 266-278, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38958711

ABSTRACT

Neural invasion underlies the local spread of gastric cancer and is associated with poor prognosis. This process has been receiving increasing attention in recent years. However, the relationship between neural invasion and the malignant phenotypes of gastric cancer cells, as well as the molecular mechanism involved in this process, remain unclear. In this study, bioinformatics analysis was performed using a dataset obtained from The Cancer Genome Atlas-Stomach Adenocarcinoma. The results revealed that high expression of GDNF family receptor alpha 3 (GFRA3) was associated with a poor prognosis of patients with gastric cancer. GFRA3 is a receptor for artemin (ARTN), a glial cell line-derived neurotrophic factor (GDNF). This association was indicated by short overall/disease-free survival, as well as the presence of high-stage and high-grade disease. Gene set enrichment analysis showed that two cancer-associated pathways, namely KRAS signaling and epithelial-mesenchymal transition (EMT), were activated when GFRA3 was highly expressed in gastric cancer. Further studies confirmed that GFRA3 activated KRAS downstream signaling phosphatidylinositol 3 kinase/protein kinase B (PI3K/AKT) or extracellular signal-regulated kinase (ERK) and induced EMT markers, as well as promoted the migration and invasion of gastric cancer cells. As a ligand of GFRA3, ARTN induced the EMT, migration, and invasion of gastric cancer cells via GFRA3. Notably, the effects of the ARTN-GFRA3 axis were attenuated by treatment with a KRAS inhibitor. The present findings indicated that, during the neural invasion of gastric cancer, ARTN-mediated activation of GFRA3 induces EMT phenotypes, migration, and invasion of gastric cancer cells via KRAS signaling.


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , Glial Cell Line-Derived Neurotrophic Factor Receptors , Neoplasm Invasiveness , Nerve Tissue Proteins , Proto-Oncogene Proteins p21(ras) , Signal Transduction , Stomach Neoplasms , Humans , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Cell Line, Tumor , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Phenotype , Prognosis , Phosphatidylinositol 3-Kinases/metabolism , Gene Expression Regulation, Neoplastic
7.
Mol Carcinog ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016677

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive tumors with poor prognosis and inadequate response to treatment, such as gemcitabine (Gem), the first-line chemotherapeutic drug. Understanding the molecular determinants that control drug resistance to Gem is critical to predict potentially responsive patients and improve the benefits of Gem therapy. Emerging evidence suggests that certain developmental pathways, such as Hippo signaling, are aberrated and play important roles in Gem resistance in cancers. Although Hippo signaling has been reported to play a role in chemoresistance in cancers, it has not been clarified which specific target gene(s) functionally mediates the effect. In the present study, we found that YAP serves as a potent barrier for the cellular sensitivity of PDAC cells to Gem. We then identified and characterized laminin subunit beta 3 (LAMB3) as a bona fide target of YAP-TEAD4 to amplify YAP signaling via a feedback loop. Such a YAP-LAMB3 axis is critical to induce epithelial-mesenchymal transition and mediate Gem resistance. Taken together, we uncovered that YAP-LAMB3 axis is an important regulator of Gem, thus providing potential therapeutic targets for overcoming Gem resistance in PDAC.

8.
Adv Sci (Weinh) ; : e2405426, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881503

ABSTRACT

Base editors (BEs) are a recent generation of genome editing tools that couple a cytidine or adenosine deaminase activity to a catalytically impaired Cas9 moiety (nCas9) to enable specific base conversions at the targeted genomic loci. Given their strong application potential, BEs are under active developments toward greater levels of efficiency and safety. Here, a previously overlooked nCas9-centric strategy is explored for enhancement of BE. Based on a cytosine BE (CBE), 20 point mutations associated with nCas9-target interaction are tested. Subsequently, from the initial positive X-to-arginine hits, combinatorial modifications are applied to establish further enhanced CBE variants (1.1-1.3). Parallel nCas9 modifications in other versions of CBEs including A3A-Y130F-BE4max, YEE-BE4max, CGBE, and split-AncBE4max, as well as in the context of two adenine BEs (ABE), likewise enhance their respective activities. The same strategy also substantially improves the efficiencies of high-fidelity nCas9/BEs. Further evidence confirms that the stabilization of nCas9-substrate interactions underlies the enhanced BE activities. In support of their translational potential, the engineered CBE and ABE variants respectively enable 82% and 25% higher rates of editing than the controls in primary human T-cells. This study thus demonstrates a highly adaptable strategy for enhancing BE, and for optimizing other forms of Cas9-derived tools.

9.
Microbiome ; 12(1): 104, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845047

ABSTRACT

BACKGROUND: Ruminant gut microbiota are critical in ecological adaptation, evolution, and nutrition utilization because it regulates energy metabolism, promotes nutrient absorption, and improves immune function. To study the functional roles of key gut microbiota in sheep and goats, it is essential to construct reference microbial gene catalogs and high-quality microbial genomes database. RESULTS: A total of 320 fecal samples were collected from 21 different sheep and goat breeds, originating from 32 distinct farms. Metagenomic deep sequencing and binning assembly were utilized to construct a comprehensive microbial genome information database for the gut microbiota. We successfully generated the largest reference gene catalogs for gut microbiota in sheep and goats, containing over 162 million and 82 million nonredundant predicted genes, respectively, with 49 million shared nonredundant predicted genes and 1138 shared species. We found that the rearing environment has a greater impact on microbial composition and function than the host's species effect. Through subsequent assembly, we obtained 5810 medium- and high-quality metagenome-assembled genomes (MAGs), out of which 2661 were yet unidentified species. Among these MAGs, we identified 91 bacterial taxa that specifically colonize the sheep gut, which encode polysaccharide utilization loci for glycan and mucin degradation. CONCLUSIONS: By shedding light on the co-symbiotic microbial communities in the gut of small ruminants, our study significantly enhances the understanding of their nutrient degradation and disease susceptibility. Our findings emphasize the vast potential of untapped resources in functional bacterial species within ruminants, further expanding our knowledge of how the ruminant gut microbiota recognizes and processes glycan and mucins. Video Abstract.


Subject(s)
Bacteria , Feces , Gastrointestinal Microbiome , Goats , Mucins , Polysaccharides , Animals , Goats/microbiology , Sheep/microbiology , Mucins/metabolism , Polysaccharides/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Feces/microbiology , Metagenome , Genome, Bacterial , Metagenomics/methods , Phylogeny , High-Throughput Nucleotide Sequencing
10.
Plants (Basel) ; 13(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38931069

ABSTRACT

The holly Ilex dabieshanensis K. Yao & M. B. Deng, a tree endemic to the Dabieshan Mountains region in China, is a commonly used landscaping plant. Like other crops, its growth is affected by salt stress. The molecular mechanism underlying salt tolerance in holly is still unclear. In this study, we used NaCl treatment and RNA sequencing (RNA-seq) at different times to identify the salt stress response genes of holly. A total of 4775 differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of the DEGs obtained at different salt treatment times (3, 6, 9, 12, and 24 h), as compared to control (ck, 0 h), showed that plant hormone signal transduction and carotenoid biosynthesis were highly enriched. The mechanism by which holly responds to salt stress involves many plant hormones, among which the accumulation of abscisic acid (ABA) and its signal transduction may play an important role. In addition, ion homeostasis, osmotic metabolism, accumulation of antioxidant enzymes and nonenzymatic antioxidant compounds, and transcription factors jointly regulate the physiological balance in holly, providing important guarantees for its growth and development under conditions of salt stress. These results lay the foundation for studying the molecular mechanisms of salt tolerance in holly and for the selection of salt-tolerant varieties.

11.
Molecules ; 29(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38893301

ABSTRACT

Carbon-based magnetic metal composites derived from metal-organic frameworks (MOFs) are promising materials for the preparation of broadband microwave absorbers. In this work, the leaf-like co-doped porous carbon/carbon nanotube heterostructure was obtained using ZIF-L@ZIF-67 as precursor. The number of carbon nanotubes can be controlled by varying the amount of ZIF-67, thus regulating the dielectric constant of the sample. An optimum reflection loss of -42.2 dB is attained when ZIF-67 is added at 2 mmol. An effective absorption bandwidth (EAB) of 4.8 GHz is achieved with a thickness of 2.2 mm and a filler weight of 12%. The excellent microwave absorption (MA) ability is generated from the mesopore structure, uniform heterogeneous interfaces, and high conduction loss. The work offers useful guidelines to devise and prepare such nanostructured materials for MA materials.

12.
Int J Biol Macromol ; 273(Pt 1): 133096, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38866267

ABSTRACT

Copper ions in wastewater pose a significant threat to human and ecological safety. Therefore, preparing macroscopic adsorbents with reusable and high adsorption performance is paramount. This paper used graphene oxide as the adsorbent and chitosan as the thickener. Additionally, a silane coupling agent was employed to enhance the acid resistance of chitosan, and amino-modification of graphene oxide was performed. Macroscopic adsorbents with high adsorption capacity were fabricated using 3D printing technology. The results show that all five proportions of inks exhibit good printability. Dissolution experiments revealed that all materials maintained structural integrity after 180 days across pH values. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Photoelectron Spectroscopy (XPS) confirmed the successful preparation of the materials. Adsorption experiments showed that the best performing material ratio was 8 wt% graphene oxide and 7 wt% chitosan. Adsorption kinetics and isothermal adsorption experiments demonstrated that the adsorption process occurred via monolayer chemisorption. The adsorption process was attributed to strong electrostatic forces, van der Waals forces, and nitrogen/oxygen-containing functional group coordination. Cycling experiments showed that the material retained good adsorption performance after 6 cycles, suggesting its potential for practical heavy metal treatment applications.


Subject(s)
Chitosan , Copper , Graphite , Chitosan/chemistry , Graphite/chemistry , Copper/chemistry , Adsorption , Kinetics , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Wastewater/chemistry , Cross-Linking Reagents/chemistry , Spectroscopy, Fourier Transform Infrared , Photoelectron Spectroscopy
13.
Adv Mater ; : e2404469, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899580

ABSTRACT

Shaping ceramic materials into sophisticated architecture with 3D hierarchical structure is desirable in multiapplication yet remains challenge due to their brittle and stiff nature. Herein, a new method to achieve ceramic architectures with unsupported and large-spanning structure by shaping vat photopolymerization 3D printed hydrogel preceramic skeleton with unique flexible and deformable character is proposed. Specifically, the present photopolymerizable hydrogel preceramic achieves one stone, two birds: the photosensitive polymer matrix coupled with ceramic nanoparticles for the first shaping by vat photopolymerization 3D printing and the secondary plasticity of the 3D printed ceramic body through flexible shape deformation of hydrogel networks. Inorganic binder aluminum dihydrogen phosphate serves as hydrogel dispersion medium to achieve ultralow shrinkage photopolymerization ceramic. Compared with conventional polymer-derived photocuring ceramics, the linear shrinkage of lamina structure is solely 2%, and which of cubic ceramic structure is just 13.3%. More importantly, one 3D printed preceramic is conducted to reshape repeatedly myriad constructions, realizing reusability of intrinsic brittle ceramic, improving manufacturing fault tolerance rate. Finally, a variety of paradigms for ceramic structure applications are proposed toward stereo circuit, biomedicine, and catalytic applications, breaking the limitation of intrinsic brittleness of ceramic in high-precision manufacturing of complex ceramic devices.

14.
Bioresour Technol ; 402: 130817, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723725

ABSTRACT

Quorum quenching (QQ) can mitigate biofouling in membrane bioreactors (MBRs) by inhibiting cell-to-cell communication. However, it is difficult to maintain long-term QQ activity. Here, a novel microbial isolator composed of tubular microfiltration membranes was developed to separate QQ bacteria (Rhodococcus sp. BH4) from sludge. The time to reach a transmembrane pressure of 50 kPa was delayed by 69.55 % (p = 0.002, Student's t test) in MBR with QQ microbial isolator (MBR-Q), compared to that in the control MBR (MBR-C) during stable operation. The concentration of proteins in the extracellular polymeric substances of sludge was reduced by 20.61 % in MBR-Q relative to MBR-C. The results of the bacterial community analyses indicated less enrichment of fouling-associated bacteria (e.g., Acinetobacter) but a higher abundance of QQ enzymes in MBR-Q than in MBR-C. This environmentally friendly technique can decrease the cleaning frequency and increase the membrane lifespan, thus improving the sustainability of MBR technology.


Subject(s)
Biofouling , Bioreactors , Membranes, Artificial , Quorum Sensing , Biofouling/prevention & control , Sewage/microbiology
15.
Ther Clin Risk Manag ; 20: 275-288, 2024.
Article in English | MEDLINE | ID: mdl-38779588

ABSTRACT

Purpose: To investigate the clinical characteristics of hospitalized patients with chronic kidney disease (CKD) and novel coronavirus (SARS-CoV-2) infection and identify potential risk factors that contribute to mortality. Patients and Methods: This is a retrospective study, conducted on patients with CKD who were admitted to the First Medical Center of the People's Liberation Army General Hospital between December 1, 2022, and February 28, 2023. All patients were also infected with SARS-CoV-2. We analyzed the clinical characteristics of patients, and the patients were categorized into a survival group and a death group whose characteristics were compared. Cox regression analysis was used to identify risk factors that affected patient prognosis. Results: A total of 406 patients were enrolled in this study, including 298 males (73.4%). The average age was 80.5 (67.0, 88.0) years, and the patients had an average estimated glomerular filtration rate (eGFR) of 50.3 (25.0-79.0) mL/min/1.73m². A total of 158 individuals died during hospitalization, resulting in a mortality rate of 38.9%. Renal function was worse in the death group than in the survival group (P < 0.001). Patients in the death group had more severe COVID-19 disease and higher CKD staging than those in the survival group (all P values < 0.001). Multivariate Cox regression analysis identified several risk factors that affected patient mortality, including being male, a higher resting heart rate (RHR) upon admission, dyspnea, a low lymphocyte count (Lym), a high international standardized ratio (INR), a high Acute Physiology and Chronic Health Evaluation II (APACHE II) score, heart failure, and the need for mechanical ventilation during the disease. Conclusion: Hospitalized patients with CKD who were infected with SARS-CoV-2 (38.9%) had a relatively high mortality rate (38.9%). Furthermore, a marked correlation was observed between a reduced eGFR and an increased risk of mortality.

16.
Sci Rep ; 14(1): 11728, 2024 05 22.
Article in English | MEDLINE | ID: mdl-38777817

ABSTRACT

COVID-19 has been massively transmitted for almost 3 years, and its multiple variants have caused serious health problems and an economic crisis. Our goal was to identify the influencing factors that reduce the threshold of disease transmission and to analyze the epidemiological patterns of COVID-19. This study served as an early assessment of the epidemiological characteristics of COVID-19 using the MaxEnt species distribution algorithm using the maximum entropy model. The transmission of COVID-19 was evaluated based on human factors and environmental variables, including climate, terrain and vegetation, along with COVID-19 daily confirmed case location data. The results of the SDM model indicate that population density was the major factor influencing the spread of COVID-19. Altitude, land cover and climatic factor showed low impact. We identified a set of practical, high-resolution, multi-factor-based maximum entropy ecological niche risk prediction systems to assess the transmission risk of the COVID-19 epidemic globally. This study provided a comprehensive analysis of various factors influencing the transmission of COVID-19, incorporating both human and environmental variables. These findings emphasize the role of different types of influencing variables in disease transmission, which could have implications for global health regulations and preparedness strategies for future outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/transmission , COVID-19/epidemiology , Humans , SARS-CoV-2/isolation & purification , Ecosystem , Climate , Global Health , Algorithms , Population Density , Geography
17.
Ecol Evol ; 14(5): e11466, 2024 May.
Article in English | MEDLINE | ID: mdl-38803609

ABSTRACT

Floodplain wetlands are critical to the conservation of aquatic biodiversity and the ecological integrity of river networks. However, increasing drought severity and frequency caused by climate change can reduce floodplain wetlands' resistance and recovery capacities. Mollusks, which are common inhabitants of floodplain wetlands, are among the most vulnerable species to drought. However, the response of mollusk communities to drought has received little attention. Here, we investigated how the structure and functional traits of mollusk communities changed in response to varying hydrological conditions, including a flash drought (FD) in the Poyang Lake floodplain wetland. Our findings showed that FD strongly reduced mollusk abundance and biomass, decreased both α- and ß-diversity, and resulted in the extinction of bivalve taxa. A sudden shift in community trait structure was discovered due to the extinction of many species. These traits, which include deposit feeding, crawling, scraping, aerial respiration, and dormancy, help mollusks survive in FD and tolerate completely dry out of their Changhuchi habitat. Finally, we discovered that dissolved oxygen was an important controlling variable for mollusk communities during drought. Our findings provide a scientific basis for the management and conservation of floodplain wetland biodiversity in the context of increasing drought frequency and intensity.

18.
Langmuir ; 40(19): 10346-10354, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38695309

ABSTRACT

To fully exploit pore engineering in the design of more efficient zeolite adsorbents for volatile organic compound (VOC) treatment, the roles of meso- and micropores need to be clarified to provide the theoretical basis and feasible measures. In this work, the three VOC sorption properties of conventional and hierarchical porous beta zeolites were comparatively investigated to study the roles of meso- and micropores. There is a division of functions between micro- and mesopores, with micropores being the main VOC adsorption sites and mesopores greatly enhancing VOC diffusion and adsorbent reusability. On the one hand, micropores should be preserved as much as possible because obtaining mesopores by sacrificing micropores (i.e., alkali treatment) results in 28-60% decreases in adsorption capacities. On the other hand, mesopore introduction is highly desirable, which results in an enhancement of VOC intraparticle diffusion rates by 1.3-2.3 times (at the VOC concentration of 600 ppm) and chlorobenzene adsorption capacity on the 20th cycle increasing from 78% of the initial value to 89 and 93%. The findings may provide valuable information about zeolite-based adsorbents for adsorption removal or recovery of VOCs.

19.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(2): 266-272, 2024 Feb 28.
Article in English, Chinese | MEDLINE | ID: mdl-38755722

ABSTRACT

OBJECTIVES: Patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) combined with severe type II respiratory failure have a high probability of ventilation failure using conventional non-invasive positive pressure ventilation (NPPV). This study aims to investigate the clinical efficacy of high intensity NPPV (HI-NPPV) for the treatment of AECOPD combined with severe type II respiratory failure. METHODS: The data of patients with AECOPD combined with severe type II respiratory failure (blood gas analysis pH≤7.25) treated with NPPV in the Second Affiliated Hospital of Chongqing Medical University from July 2013 to July 2023 were collected to conduct a retrospective case-control study. The patients were divided into 2 groups according to the inspired positive airway pressure (IPAP) used during the NPPV treatment: a NPPV group (IPAP<20 cmH2O, 1 cmH2O=0.098 kPa) and a HI-NPPV group (20 cmH2O≤IPAP< 30 cmH2O). Ninety-nine and 95 patients were included in the NPPV group and the HI-NPPV group, respectively. A total of 86 pairs of data were matched using propensity score matching (PSM) for data matching. The primary outcome indexes (mortality and tracheal intubation rate) and secondary outcome indexes [blood gas analysis pH, arterial partial pressure of oxygen (PaO2) and arterial partial pressure of carbon dioxide (PaCO2), adverse reaction rate, and length of hospitalization] were compared between the 2 groups. RESULTS: The tracheal intubation rates of the NPPV group and the HI-NPPV group were 6.98% and 1.16%, respectively, and the difference between the 2 groups was statistically significant (χ2=4.32, P<0.05); the mortality of the NPPV group and the HI-NPPV group was 23.26% and 9.30%, respectively, and the difference between the 2 groups was statistically significant (χ2=11.64, P<0.01). The PaO2 at 24 h and 48 h after treatment of the HI-NPPV group was higher than that of the NPPV group, and the PaCO2 of the HI-NPPV group was lower than that of the NPPV group, and the differences were statistically significant (all P<0.05). The differences of pH at 24 h and 48 h after treatment between the 2 groups were not statistically significant (both P>0.05). The differences between the 2 groups in adverse reaction rate and hospitalization length were not statistically significant (both P>0.05). CONCLUSIONS: HI-NPPV can reduce mortality and tracheal intubation rates by rapidly improving the ventilation of patients with AECOPD combined with severe type II respiratory failure. This study provides a new idea for the treatment of patients with AECOPD combined with severe type II respiratory failure.


Subject(s)
Noninvasive Ventilation , Positive-Pressure Respiration , Pulmonary Disease, Chronic Obstructive , Respiratory Insufficiency , Humans , Retrospective Studies , Pulmonary Disease, Chronic Obstructive/therapy , Pulmonary Disease, Chronic Obstructive/complications , Case-Control Studies , Respiratory Insufficiency/therapy , Respiratory Insufficiency/etiology , Positive-Pressure Respiration/methods , Male , Female , Noninvasive Ventilation/methods , Treatment Outcome , Blood Gas Analysis , Aged , Propensity Score , Middle Aged
20.
Mol Cancer ; 23(1): 102, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755678

ABSTRACT

Peptides and proteins encoded by noncanonical open reading frames (ORFs) of circRNAs have recently been recognized to play important roles in disease progression, but the biological functions and mechanisms of these peptides and proteins are largely unknown. Here, we identified a potential coding circular RNA, circTRIM1, that was upregulated in doxorubicin-resistant TNBC cells by intersecting transcriptome and translatome RNA-seq data, and its expression was correlated with clinicopathological characteristics and poor prognosis in patients with TNBC. CircTRIM1 possesses a functional IRES element along with an 810 nt ORF that can be translated into a novel endogenously expressed protein termed TRIM1-269aa. Functionally, we demonstrated that TRIM1-269aa, which is involved in the biological functions of circTRIM1, promoted chemoresistance and metastasis in TNBC cells both in vitro and in vivo. In addition, we found that TRIM1-269aa can be packaged into exosomes and transmitted between TNBC cells. Mechanistically, TRIM1-269aa enhanced the interaction between MARCKS and calmodulin, thus promoting the calmodulin-dependent translocation of MARCKS, which further initiated the activation of the PI3K/AKT/mTOR pathway. Overall, circTRIM1, which encodes TRIM1-269aa, promoted TNBC chemoresistance and metastasis by enhancing MARCKS translocation and PI3K/AKT/mTOR activation. Our investigation has yielded novel insights into the roles of protein-coding circRNAs and supported circTRIM1/TRIM1-269aa as a novel promising prognostic and therapeutic target for patients with TNBC.


Subject(s)
Drug Resistance, Neoplasm , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , RNA, Circular , TOR Serine-Threonine Kinases , Triple Negative Breast Neoplasms , Humans , RNA, Circular/genetics , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Drug Resistance, Neoplasm/genetics , Animals , Female , Mice , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Signal Transduction , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL