Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Res ; : 1-9, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623908

ABSTRACT

Two novel neolignans, piperkadsurenin A (1) and kadsurenin N (2), along with six known neolignans (3-8) and two lignans (9-10) were isolated from the stems of Piper kadsura (Choisy) Ohwi. Extensive spectroscopic data interpretation and ECD calculations were used to identify the structures of the new compounds 1 and 2. Especially, compound 1 represents the first example of neolignan with cyclopenta[b]pyran framework. The anti-inflammatory efficacy of compounds 1-10 in vitro was systematically assessed through NO production inhibitory assay. Compounds 3 and 7 significantly inhibited LPS-induced NO generation in RAW 264.7 cells, with IC50 values of 34.29 ± 0.82 and 47.5 ± 5.81 µM, respectively.

2.
J Econ Entomol ; 116(4): 1379-1390, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37300368

ABSTRACT

Silkworms (Bombyx mori) reared on artificial diets during all instars have the advantages of simplicity and efficiency, year-round production, and reduced risk of poisoning. However, low silk yield remains a challenge, limiting its industrial application. To address this issue, the spinning behavior, nutrient absorption, and transcriptomics of silkworms were investigated. Compared with silkworms reared on mulberry leaves during all instars, those fed with artificial diets showed significantly lower cocoon weight, cocoon shell weight, cocoon shell rate, and silk gland tissue somatic index at the end of the fifth instar (P < 0.01). The spinning duration and crawling distance of silkworms reared on artificial diets were also significantly lower than those reared on mulberry leaves (P < 0.01). Regarding nutrient absorption, the dietary efficiency indexes of silkworms fed with artificial diets were significantly lower than those fed with mulberry leaves, except for the efficiency conversion of digesta to cocoon (P < 0.01). Further RNA-Seq analysis revealed 386 differentially transcribed genes between the 2 groups, with 242 upregulated and 144 downregulated genes. GO enrichment analysis showed that differential transcriptional genes were mainly enriched in organic acid metabolism, oxidation-reduction, and drug catabolism. KEGG enrichment analysis showed that differential transcriptional genes were mainly enriched in genetic information processing and metabolism pathways. Our findings provide new insights into the silk secretion and can serve as a reference for future research and application of silkworms fed with artificial diets.


Subject(s)
Bombyx , Lepidoptera , Morus , Animals , Bombyx/genetics , Bombyx/metabolism , Silk/metabolism , Lepidoptera/genetics , Diet , Transcription, Genetic
3.
Mol Ther Methods Clin Dev ; 19: 35-46, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-32995358

ABSTRACT

To ensure the high purity and biological activity of the adenovirus vector to be used for clinical applications, a stable and linearly scalable preparation method is highly imperative. During the adenovirus-harvesting process, the Triton X-100-based lysis method possesses the advantages of higher efficiency as well as easier linearization and amplification. Most Triton X-100 can be removed from the adenovirus sample by chromatographic purification. However, there is no report that a small amount of residual Triton X-100, present in adenovirus sample, can affect the particle integrity, infectivity, and structure of adenoviruses. Here, we found that although residual Triton X-100 affected the short-term stability, purity, infectivity, and structure of adenoviruses at 37°C, it did not hamper these properties of adenoviruses at 4°C. This study suggests that although the Triton X-100-based lysis method is a simple, efficient, and easy-to-scale process for lysing host cells to release the adenovirus, the storage conditions of adenovirus products must be taken into consideration.

4.
Front Plant Sci ; 11: 457, 2020.
Article in English | MEDLINE | ID: mdl-32477376

ABSTRACT

Salinity stress impairs plant growth and causes crops to yield losses worldwide. Reduction of in vivo gibberellin acid (GA) level is known to repress plant size but is beneficial to plant salt tolerance. However, the mechanisms of in vivo GA deficiency-enhanced salt tolerance in maize are still ambiguous. In this study, we generated two independent maize knockout mutant lines of ent-copalyl diphosphate synthase (one of the key enzymes for early steps of GA biosynthesis), zmcps-1 and zmcps-7, to explore the role of GA in maize salt tolerance. The typical dwarf phenotype with lower GA content and delayed leaf senescence under salinity was observed in the mutant plants. The leaf water potential and cell turgor potential were significantly higher in zmcps-1 and zmcps-7 than in the wild type (WT) under salt stress. The mutant plants exhibited a lower superoxide anion production rate in leaves and also a downregulated relative expression level of NAPDH oxidase ZmRbohA-C than the WT maize under salt stress. Also, the mutant plants had higher enzymatic activities of superoxide dismutase (SOD) and catalase (CAT) and higher content of soluble sugars and proline under salt stress. The Na+/K+ ratio was not significantly different between the mutant maize plants and WT plants under salt stress conditions, but the Na+ and K+ content was increased in zmcps-1 and zmcps-7 leaves and shoots. Na+ fluorescent dye staining showed that the mutant leaves have significantly higher vacuolar Na+ intensity than the WT maize. The expression level of vacuolar Na+/H+ exchanger gene ZmNHX1 and vacuolar proton pump genes ZmVP1-1 and ZmVP2 were upregulated in the zmcps-1 and zmcps-7 plants under salinity, further proving that in vivo GA deficiency enhanced vacuolar Na+ sequestration in zmcps-1 and zmcps-7 leaves cells to avoid Na+ cytotoxicity. Together, our results suggested that maintaining ROS homeostasis and enhancing vacuolar Na+ sequestration could be involved in GA deficiency-improved maize salt tolerance.

5.
Front Oncol ; 10: 561372, 2020.
Article in English | MEDLINE | ID: mdl-33680911

ABSTRACT

Oncolytic viruses (OVs) are potential antitumor agents with unique therapeutic mechanisms. They possess the ability of direct oncolysis and the induction of antitumor immunity. OV can be genetically engineered to potentiate antitumor efficacy by remodeling the tumor immune microenvironment. The present mini review mainly describes the effect of OVs on remodeling of the tumor immune microenvironment and explores the mechanism of regulation of the host immune system and the promotion of the immune cells to destroy carcinoma cells by OVs. Furthermore, this article focuses on the utilization of OVs as vectors for the delivery of immunomodulatory cytokines or antibodies.

6.
Eur J Pharm Sci ; 141: 105090, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31626964

ABSTRACT

With the rapid development of gene therapy, gene-based medicine with adenovirus as vectors has become a new method for disease treatment. However, there are still enormous challenges in the large-scale production of adenoviruses for clinical use. Recent reports show that ion-exchange chromatography (IEC) is an effective tool for the isolation and purification of adenovirus. However, during the separation and purification, host cell protein and DNA, as well as serum from the culture medium, can non-specifically occupy numerous binding sites of the chromatography packings, thereby reducing the binding between the adenovirus and packing media. We here report a novel method for highly efficient purification of adenoviruses by increasing the salt concentrations of the samples to be ultrafiltrated by tangential flow filtration, the diafiltration buffer, and the samples for IEC purification. This method could significantly remove a large amount of serum proteins and host cell proteins, increase the amount of sample loaded on the IEC column, and improve the binding of the adenovirus samples to the packing media. A purity of > 95% could be obtained after one chromatography operation, and the number of purification steps and the amount of used packing media were reduced. The method is simple, economical, and efficient, and has excellent applications.


Subject(s)
Adenoviridae/isolation & purification , Genetic Vectors/isolation & purification , Bioreactors , Blood Proteins , Buffers , Chromatography, Ion Exchange , HEK293 Cells , Humans , Magnesium Chloride/chemistry , Sodium Chloride/chemistry , Ultrafiltration
7.
Environ Sci Pollut Res Int ; 26(5): 4777-4790, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30565114

ABSTRACT

The denitrifying anaerobic methane oxidation (DAMO) process can achieve methane oxidation and denitrification at the same time by using nitrate or nitrite as an electron acceptor. The short- and long-term effects of nitrite on DAMO organisms were studied from macro (such as denitrification) to micro (such as microbial structure and community) based on two types of DAMO microbial systems. The results showed that the inhibitory effects of nitrite on the two DAMO microbial systems increased with rising concentration and prolonged time. In the short-term inhibitory phase, nitrite with concentrations below 100 mg N L-1 did not inhibit the two distinct DAMO enrichments. When nitrite concentration was increased to 950 mg N L-1, the nitrogen removal performance was completely inhibited. However, in the long-term inhibition experiment, when nitrite concentration was increased to 650 mg N L-1, the nitrogen removal performance was completely inhibited. In addition, in acidic conditions, the real inhibitor of nitrite is FNA (free nitrous acid), while in alkaline conditions, the real inhibitor is the ionized form of nitrite. By using high-throughput sequencing technology, the species abundance and diversity of the two DAMO microbial systems showed an apparent decrease after long-term inhibition, and the community structure also changed significantly. For the enrichment culture dominated by DAMO bacteria, the substantial drop of Methylomonas may be the internal cause of the decreased nitrogen removal rate, and for the coexistence system that hosted both DAMO bacteria and archaea, the reduction of Nitrospirae may be an internal reason for the decline of the denitrification rate.


Subject(s)
Bioreactors/microbiology , Methane/metabolism , Methylococcaceae/metabolism , Nitrites/metabolism , Anaerobiosis/drug effects , Archaea/genetics , Archaea/metabolism , Denitrification , High-Throughput Nucleotide Sequencing , Methylococcaceae/drug effects , Methylococcaceae/genetics , Methylomonas/metabolism , Microbial Consortia/physiology , Nitrates/metabolism , Nitrates/pharmacology , Nitrites/pharmacology , Nitrogen/metabolism , Oxidation-Reduction , Waste Disposal, Fluid/instrumentation , Waste Disposal, Fluid/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...