Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Environ Int ; 190: 108898, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39047547

ABSTRACT

Humans are exposed to an ever-increasing number of environmental toxicants, some of which have gradually been identified as major risk factors for male reproductive health, even associated with male infertility. Male infertility is usually due to the reproductive system damage, which may be influenced by the exposure to contaminants such as heavy metals, plasticizers, along with genetics and lifestyle. Testicular immune microenvironment (TIM) is important in maintaining normal physiological functions of the testis, whether disturbed TIM after exposure to environmental toxicants could induce reproductive toxicity remains to be explored. Therefore, the current review aims to contribute to the further understanding of exposure and male infertility by characterizing environmental exposures and the effect on TIM. We first summarized the male reproductive toxicity phenotypes induced by common environmental pollutants. Contaminants including heavy metals and plastic additives and fine particulate matter (PM2.5), have been repetitively associated with male infertility, whereas emerging contaminants such as perfluoroalkyl substances and micro(nano)plastics have also been found to disrupt TIM and lead to male reproductive toxicity. We further reviewed the importance of TIM and its homeostasis in maintaining the normal physiological functions of the testis. Most importantly, we discussed the advances in immunology of male reproductive toxicity induced by metals and metalloids, plastic additives, persistent organic pollutants (POPs), micro(nano)plastic and PM2.5 to suggest the importance of reproductive immunotoxicology in the future study of environmental toxicants, but also contribute to the development of effective prevention and treatment strategies for mitigating adverse effects of environmental pollutants on human health.

2.
Nat Commun ; 15(1): 1353, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355624

ABSTRACT

There is strong evidence that obesity is a risk factor for poor semen quality. However, the effects of multigenerational paternal obesity on the susceptibility to cadmium (a reproductive toxicant)-induced spermatogenesis disorders in offspring remain unknown. Here, we show that, in mice, spermatogenesis and retinoic acid levels become progressively lower as the number of generations exposed to a high-fat diet increase. Furthermore, exposing several generations of mice to a high fat diet results in a decrease in the expression of Wt1, a transcription factor upstream of the enzymes that synthesize retinoic acid. These effects can be rescued by injecting adeno-associated virus 9-Wt1 into the mouse testes of the offspring. Additionally, multigenerational paternal high-fat diet progressively increases METTL3 and Wt1 N6-methyladenosine levels in the testes of offspring mice. Mechanistically, treating the fathers with STM2457, a METTL3 inhibitor, restores obesity-reduced sperm count, and decreases Wt1 N6-methyladenosine level in the mouse testes of the offspring. A case-controlled study shows that human donors who are overweight or obese exhibit elevated N6-methyladenosine levels in sperm and decreased sperm concentration. Collectively, these results indicate that multigenerational paternal obesity enhances the susceptibility of the offspring to spermatogenesis disorders by increasing METTL3-mediated Wt1 N6-methyladenosine modification.


Subject(s)
Infertility, Male , Semen Analysis , Animals , Humans , Male , Mice , Diet, High-Fat/adverse effects , Fathers , Infertility, Male/genetics , Methyltransferases , Obesity/metabolism , Semen/metabolism , Tretinoin
SELECTION OF CITATIONS
SEARCH DETAIL