Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Front Neurosci ; 18: 1355052, 2024.
Article in English | MEDLINE | ID: mdl-38456145

ABSTRACT

Introduction: Patients suffering from limb movement disorders require more complete rehabilitation treatment, and there is a huge demand for rehabilitation exoskeleton robots. Flexible and reliable motion control of exoskeleton robots is very important for patient rehabilitation. Methods: This paper proposes a novel exoskeleton robotic system for lower limb rehabilitation. The designed lower limb rehabilitation exoskeleton robot mechanism is mainly composed of the hip joint mechanism, the knee joint mechanism and the ankle joint mechanism. The forces and motion of the exoskeleton robot were analyzed in detail to determine its design parameters. The robot control system was developed to implement closed-loop position control and trajectory planning control of each joint mechanism. Results: Multiple experiments and tests were carried out to verify robot's performance and practicality. In the robot angular response experiments, the joint mechanism could quickly adjust to different desired angles, including 15°, 30°, 45°, and 60°. In the trajectory tracking experiments, the exoskeleton robot could complete tracking movements of typical actions such as walking, standing up, sitting down, go upstairs and go downstairs, with a maximum tracking error of ±5°. Robotic wearing tests on normal people were performed to verify the assistive effects of the lower limb rehabilitation exoskeleton at different stages. Discussion: The experimental results indicated that the exoskeleton robot has excellent reliability and practicality. The application of this exoskeleton robotic system will help paralyzed patients perform some daily movements and sports.

2.
Biomimetics (Basel) ; 8(5)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37754158

ABSTRACT

Bionic robotic fish have advantages over traditional underwater propulsion. Most of the existing studies have been conducted with only one type of fish as a bionic object, but a single propulsion mode may not be able to achieve the different needs of underwater operations. In this paper, we designed a pneumatic variable-configuration soft bionic fish and completed the overall structure design. It was built with a cownose ray as the main-configuration bionic object and a Caranx melampygus as the secondary-configuration bionic object. The base structure, actuators, and variable-configuration modules of the robot were made using flexible materials. After completing the design of the structure and control system of the robot, the prototype was manufactured and an underwater test was completed. The tests results indicated that the robot fish could achieve underwater linear propulsion and turning movements in both configurations. The maximum propulsion speed of the main configuration was 38.24 mm/s and the turning angle speed was 5.6°/s, and the maximum propulsion speed of its secondary configuration was 43.05 mm/s and the turning angle speed was 30°/s. The feasibility of the machine fish structure and control scheme were verified.

3.
Article in English | MEDLINE | ID: mdl-37580643

ABSTRACT

Myocardial ischemia/reperfusion (I/R) injury after the onset of acute myocardial infarction (AMI) can be life-threatening, and there is no effective strategy for therapeutic intervention. Here, we studied the potential of protectin D1 in protecting from I/R-induced cardiac damages and investigated the underlying mechanisms. An in vivo rat model of I/R after AMI induction was established through the ligation of the left anterior descending (LAD) artery to assess the cardiac functions and evaluate the protective effect of protectin D1. Protectin D1 protected against I/R-induced oxidative stress and inflammation in the rat model, improved the cardiac function, and reduced the infarct size in myocardial tissues. The beneficial effect of protectin D1 was associated with the up-regulation of miRNA-210 and the effects on PI3K/AKT signaling and HIF-1α expression. Together, our data suggest that protectin D1 could serve as a potential cardioprotective agent against I/R-associated cardiac defects.

4.
Psychiatry Res Neuroimaging ; 334: 111690, 2023 09.
Article in English | MEDLINE | ID: mdl-37480705

ABSTRACT

Schizophrenia is a severe mental disease with significant morphometric reductions in gray matter volume and cortical thickness in a variety of brain regions. However, most studies only focused on the voxel level alterations in specific cerebral regions and ignored the spatial relationship between voxels. In the present study, we used a novel, data-driven technique-nonnegative matrix factorization (NMF) to group voxels with similar information into a network, and studied the structural covariance at the network level in schizophrenia. Our sample included 36 patients with schizophrenia and 21 healthy controls. Compared with healthy controls, patients with schizophrenia showed significant gray matter volume reductions in six structural covariance networks (dorsal striatum, thalamus, hippocampus-parahippocampus, supplementary motor area-fusiform, middle/inferior temporal network, frontal-parietal-occipital network). Our findings confirmed the assumption of a disturbance in the cortical-subcortical circuit in schizophrenia and suggested that NMF is a useful multivariate method to identify brain networks, which provides a new perspective to study the neural mechanism in schizophrenia.


Subject(s)
Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Brain/diagnostic imaging , Gray Matter/diagnostic imaging , Algorithms , Hippocampus
5.
Soft Robot ; 10(5): 1015-1027, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37184583

ABSTRACT

Continuum robots have the advantages of agility and adaptability. However, existing continuum robots have limitations of low stiffness and complex motion modes, and the existing variable stiffness methods cannot achieve a wide range of stiffness changes and fast switching stiffness simultaneously. A continuum robot structure, switching stiffness method, and motion principle are proposed in this article. The continuum robot is made up of three segments connected in series. Each segment comprises multiple spherical joints connected in series, and the joints can be locked by their respective airbag. A valve controls each airbag, quickly switching the segment between rigidity and flexibility. The motion of the segments is driven by three cables that run through the robot. The segment steers only when it is unlocked. When a segment becomes locked, it acts as a rigid body. As a result, by locking and unlocking each segment in sequence, the cables can alternately drive all the segments. The stiffness variation and movement of the continuum robot were tested. The segment's stiffness varies from 36.89 to 1300.95 N/m and the stiffness switching time is 0.25-0.48 s. The time-sharing control mode of segment stiffness and motion is validated by establishing a specific test platform and a mathematical model. The continuum robot's flexibility is demonstrated by controlling the fast bending of different segments sequentially.

6.
Micromachines (Basel) ; 14(3)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36984954

ABSTRACT

Wall-climbing robots have been well-developed for storage tank inspection. This work presents a backstepping sliding-mode control (BSMC) strategy for the spatial trajectory tracking control of a wall-climbing robot, which is specially designed to inspect inside and outside of cylindrical storage tanks. The inspection robot is designed with four magnetic wheels, which are driven by two DC motors. In order to achieve an accurate spatial position of the robot, a multisensor-data-fusion positioning method is developed. The new control method is proposed with kinematics based on a cylindrical coordinate system as the robot is moving on a cylindrical surface. The main purpose is to promote a smooth and stable tracking performance during inspection tasks, under the consideration of the robot's kinematic constraints and the magnetic restrictions of the adhesion system. The simulation results indicate that the proposed sliding mode controller can quickly correct the errors and global asymptotic stability is achieved. The prototype experimental results further validate the advancement of the proposed method; the wall-climbing robot can track both longitudinal and horizontal spatial trajectories stably with high precision.

7.
Plant Physiol ; 192(3): 2523-2536, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36974901

ABSTRACT

Programed cell death (PCD) plays fundamental roles in plant development and responses to environmental stresses. Here, we report a protein, SICKLE (SIC), which represses PCD. In Arabidopsis (Arabidopsis thaliana), the loss-of-function mutant of SIC, sic-4, hyperaccumulated lariat intronic RNAs (lariRNAs) and exhibited PCD. The gene encoding an RNA debranching enzyme 1 (DBR1), a rate-limiting enzyme for lariRNAs decay, was overexpressed to reduce the level of lariRNAs in the sic-4 mutant, which led to suppression of PCD. Meanwhile, another lariRNAs hyper-accumulating mutant, dbr1-2, also exhibited PCD, further indicating that sic-4 PCD is caused by hyper-accumulation of lariRNAs. Transcriptional profiling analyses revealed that the sic-4 mutation disturbed alternative splicing and decay of mRNAs associated with salicylic acid (SA) homeostasis, a well-known molecule functioning in PCD regulation. Moreover, SA is dramatically increased in sic-4 and the disruption of SA biosynthesis and signaling suppressed PCD in the mutant, demonstrating that SA functions downstream of sic-4. Taken together, our results demonstrate that SIC is involved in regulating SA-triggered PCD.


Subject(s)
Alternative Splicing , Apoptosis , Arabidopsis Proteins , Arabidopsis , RNA Stability , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , RNA, Messenger/genetics , Salicylic Acid/metabolism
8.
J Orthop Translat ; 34: 91-101, 2022 May.
Article in English | MEDLINE | ID: mdl-35847603

ABSTRACT

Objective: Meniscus tear is a common problem in sports trauma, and its imaging diagnosis mainly relies on MRI. To improve the diagnostic accuracy and efficiency, a deep learning model was employed in this study and the identification efficiency was evaluated. Methods: Standard knee MRI images from 924 individual patients were used to complete the training, validation and testing processes. Mask regional convolutional neural network (R-CNN) was used to build the deep learning network structure, and ResNet50 was adopted to develop the backbone network. The deep learning model was trained and validated with a dataset containing 504 and 220 patients, respectively. Internal testing was performed based on a dataset of 200 patients, and 180 patients from 8 hospitals were regarded as an external dataset for model validation. Additionally, 40 patients who were diagnosed by the arthroscopic surgery were enrolled as the final test dataset. Results: After training and validation, the deep learning model effectively recognized healthy and injured menisci. Average precision for the three types of menisci (healthy, torn and degenerated menisci) ranged from 68% to 80%. Diagnostic accuracy for healthy, torn and degenerated menisci was 87.50%, 86.96%, and 84.78%, respectively. Validation results from external dataset demonstrated that the accuracy of diagnosing torn and intact meniscus tear through 3.0T MRI images was higher than 80%, while the accuracy verified by arthroscopic surgery was 87.50%. Conclusion: Mask R-CNN effectively identified and diagnosed meniscal injuries, especially for tears that occurred in different parts of the meniscus. The recognition ability was admirable, and the diagnostic accuracy could be further improved with increased training sample size. Therefore, this deep learning model showed great potential in diagnosing meniscus injuries. Translational potential of this article: Deep learning model exerted unique effect in terms of reducing doctors' workload and improving diagnostic accuracy. Injured and healthy menisci could be more accurately identified and classified based on training and learning datasets. This model could also distinguish torn from degenerated menisci, making it an effective tool for MRI-assisted diagnosis of meniscus injuries in clinical practice.

9.
Psych J ; 11(3): 401-408, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35023332

ABSTRACT

Neurological soft signs (NSSs) are subtle motor and sensory deficits, and are associated with poor cognitive abilities. Although cognitive ability has been found to be a significant predictor for academic performance in children, it remains unclear whether NSSs could contribute to academic abilities such as mathematical skills, and its contribution varies according to grade level. Therefore, in this cross-sectional study, we examined the relationships between NSSs and different mathematical skills (calculation fluency, numerical operations, and mathematical problem-solving) in 105 Chinese children (Mean age = 7.76 years, SD age = 0.67 years; 52 from second grade, 53 from third grade; 56 boys and 49 girls) recruited from a primary public school located in Shanghai. The results of regression analyses revealed that NSSs significantly predicted calculation fluency (ß = -.32, p < .050), numerical operations (ß = -.38, p < .050), and mathematical problem-solving (ß = -0.40, p < .010) in second but not third grade, even controlling for cognitive processes. Our results implicate that NSSs could be a potential predictor for mathematical skills in the early years of primary school.


Subject(s)
Aptitude , Problem Solving , Child , China , Cross-Sectional Studies , Female , Humans , Infant , Male , Mathematics
10.
IEEE Trans Biomed Eng ; 69(3): 1212-1224, 2022 03.
Article in English | MEDLINE | ID: mdl-34665715

ABSTRACT

OBJECTIVE: Active exoskeletons can handle different walking conditions, but require bulky components (e.g., motors) that need a significant source of power to do so. Purely passive exoskeletons are lightweight and energy-neutral, containing energy-recycling mechanisms that capture energy loss during negative power phases and return it as walking assistance. However, they are usually designed for stereotyped gaits (e.g., walking at fixed speed) and thus show poor adaptivity for variable conditions. This study is aimed to overcome these issues. METHODS: A quasi-passive ankle exoskeleton is designed to integrate the merits of both active and passive exoskeletons, which captures the heel-strike energy loss and recycles it into propulsion. A novel, lightweight, energy-saving clutch and a heel-strike energy-storage mechanism are developed. They are coupled by a series spring that assists user's calf muscles. Six healthy subjects walked with the device on level ground and inclined surfaces to validate its functionality. RESULTS: Level ground studies indicate that the energy-storage mechanism enhances the assistance by increasing the output torque of the exoskeleton. Reductions in metabolic cost (6.4 ± 1.3%, p < 0.05) were observed. During uphill walking, the assistance torque decreased compared with that on level ground, but it still reduced overall metabolic cost compared with baseline walking. During downhill walking, the assistance torque increased, but metabolic cost also slightly increased. CONCLUSION: These results demonstrate the functionality of the prototype on level ground and its limitations on inclined surfaces. SIGNIFICANCE: The proposed device highlights the possibility of widening the potential applications of exoskeletons.


Subject(s)
Exoskeleton Device , Ankle/physiology , Ankle Joint/physiology , Biomechanical Phenomena , Energy Metabolism/physiology , Humans , Walking/physiology
11.
J Adv Res ; 30: 75-84, 2021 05.
Article in English | MEDLINE | ID: mdl-34026288

ABSTRACT

Introduction: The traditional clinical treatment of long segmental bone defects usually requires multiple operations and depends on donor availability. The 3D bio-printing technology constitutes a great potential therapeutic tool for such an injury. However, in situ 3D bio-printing remains a major challenge. Objectives: In this study, we report the repair of long segmental bone defects by in situ 3D bio-printing using a robotic manipulator 3D printer in a swine model. Methods: We systematically optimized bio-ink gelation under physiological conditions to achieve desirable mechanical properties suitable for bone regeneration, and a D-H kinematic model was used to improve printing accuracy to 0.5 mm. Results: These technical improvements allowed the repair of long segmental defects generated on the right tibia of pigs using 3D bio-printing within 12 min. The 3D bio-printing group showed improved treatment effects after 3 months. Conclusion: These findings indicated that robotic in situ 3D bio-printing is promising for direct clinical application.


Subject(s)
Bioprinting/methods , Bone Substitutes/therapeutic use , Bone and Bones/surgery , Printing, Three-Dimensional , Robotic Surgical Procedures/methods , Tissue Engineering/methods , Animals , Bone Regeneration , Bone Substitutes/chemistry , Bone and Bones/pathology , Swine , Technology , Tissue Scaffolds/chemistry
12.
J Healthc Eng ; 2020: 8817422, 2020.
Article in English | MEDLINE | ID: mdl-33133473

ABSTRACT

Bone drilling is known as one of the most sensitive milling processes in biomedical engineering field. Fracture behavior of this cortical bone during drilling has attracted the attention of many researchers; however, there are still impending concerns such as necrosis, tool breakage, and microcracks due to high cutting forces, torques, and high vibration while drilling. This paper presents a comparative analysis of the cutting forces, torques, and vibration resulted on different bone samples (bovine, porcine, and artificial femur) using a 6dof Robot arm effector with considerations of its stiffness effects. Experiments were conducted on two spindle speeds of 1000 and 1500 rpm with a drill bit diameter of 2.5 mm and 6 mm depth of cut. The results obtained from the specimens were processed and analyzed using MATLAB R2015b and Visio 2000 software; these results were then compared with a prior test using manual and conventional drilling methods. The results obtained show that there is a significant drop in the average values of maximum drilling force for all the bone specimens when the spindle speed changes from 1000 rev/min to 1500 rev/min, with a drop from (20.07 to 12.34 N), approximately 23.85% for bovine, (11.25 to 8.14 N) with 16.03% for porcine, and (5.62 to 3.86 N) with 33.99% for artificial femur. The maximum average values of torque also decrease from 41.2 to 24.2 N·mm (bovine), 37.0 to 21.6 N·mm (porcine), and 13.6 to 6.7 N·mm (artificial femur), respectively. At an increase in the spindle speed, the vibration amplitude on all the bone samples also increases considerably. The variation in drilling force, torque, and vibration in our result also confirm that the stiffness of the robot effector joint has negative effect on the bone precision during drilling process.


Subject(s)
Robotics , Vibration , Animals , Bone and Bones , Cattle , Femur/surgery , Swine , Torque
13.
J Adv Res ; 23: 123-132, 2020 May.
Article in English | MEDLINE | ID: mdl-32099674

ABSTRACT

The concept of in situ 3D bio-printing was previously reported, while its realization has still encountered with several difficulties. The present study aimed to report robotic-assisted in situ 3D bio-printing technology for cartilage regeneration, and explore its potential in clinical application. A six-degree-of-freedom (6-DOF) robot was introduced in this study, and a fast tool center point (TCP) calibration method was developed to improve printing accuracy. The bio-ink consisted of hyaluronic acid methacrylate and acrylate-terminated 4-armed polyethylene glycol was employed as well. The in vitro experiment was performed on a resin model to verify the printing accuracy. The in vivo experiment was conducted on rabbits to evaluate the cartilage treatment capability. According to our results, the accuracy of the robot could be notably improved, and the error of printed surface was less than 30 µm. The osteochondral defect could be repaired during about 60 s, and the regenerated cartilage in hydrogel implantation and in situ 3D bio-printing groups demonstrated the same biomechanical and biochemical performance. We found that the cartilage injury could be treated by using this method. The robotic-assisted in situ 3D bio-printing is highly appropriate for improving surgical procedure, as well as promoting cartilage regeneration.

14.
J Orthop Translat ; 20: 47-55, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31908933

ABSTRACT

BACKGROUND: The biomechanical change during the medial meniscus damage in the process of knee osteoarthritis has not been explored. The purpose of this study was to determine the effect of aggravating medial meniscus degenerative tear on the progress of knee osteoarthritis through the finite-element simulation method. METHODS: The three-dimensional digital model of a total-knee joint was obtained using a combination of magnetic resonance imaging and computed tomography images. Four types of medial meniscus tears were created to represent the aggravating degenerative meniscus lesions. Meniscectomy of each meniscal tear was also utilized in the simulation. The compression and shear stress of bony tissue, cartilage, and meniscus were evaluated, and meniscus extrusion of the healthy knee, postinjured knee, and postmeniscectomy knee were investigated under the posture of balanced standing. RESULTS: Based on the results of finite-element simulation, the peak shear principal stress, peak compression principal stress, and meniscus extrusion increased gradually as the meniscus tears' region enlarged progressively (from 7.333 MPa to 15.14 MPa on medial femur and from 6 MPa to 20.94 MPa on medial tibia). The higher stress and larger meniscus extrusion displacement in all tests were observed in the flap and complex tears. The oblique tears also had a biomechanical variation of stress and meniscus extrusion in the knee joint, but their level was milder. Both the peak value of the stress and meniscus displacement increased after the meniscectomy. CONCLUSION: In contrast to the damaged hemijoint, the stress applied on the healthy lateral hemijoint increased. The change of biomechanics was more obvious with the aggravation of meniscus injury. The advanced degenerative damage resulted in increasing stress that was more likely to cause symptomatic clinical manifestation in the knee joint and accelerate the progress of osteoarthritis. Moreover, we found that the meniscus injury caused higher stress concentration on the contralateral side of the joint. We also discovered that the meniscectomy can lead to more serious biomechanical changes, and although this technique can relieve pain over a period of time, it increased the risk of osteoarthritis (OA) occurrence. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: It is clear that the meniscal lesions can cause osteoarthritic knee, but the biomechanical change during the meniscus damage period has not been explored. We have evaluated the variation of stress during the aggravating medial degenerative meniscus tears and the relationship in the process of knee OA through finite-element simulation. This study does favour to obtain a better understanding on the symptoms and pathological changes of OA. It also may provide some potential directions for the prophylaxis and treatment of OA.

15.
J Orthop Translat ; 19: 94-105, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31844617

ABSTRACT

BACKGROUND: The graded porous structures were designed using triply periodic minimal surfaces models to mimic the biomechanical properties of bone. The mechanical properties and bone formation ability were evaluated to explore the feasibility of the design method in bone tissue engineering. METHODS: The scaffolds were designed using a P-surface with different pore sizes. All materials were fabricated using 3D printing technology and the mechanical properties were tested by an electronic universal testing device. The biomechanical properties were then analyzed by finite element method, while the ontogenesis of the material in vivo was examined by implanting the scaffolds for five weeks in pigs. RESULTS: According to the obtained results, the pore size ranged between 100 µm to about 700 µm and porosity were around 49.54%. The graded porous architectures can decrease the stiffness of implants and reduce the stress shielding effect. In addition, these porous structures can stimulate bone ingrowth and achieve a stable interface between implants and surrounding bone tissues after 5 weeks' implantation. The micro-CT results also demonstrated the obviously bone formation around all the porous structures. CONCLUSION: To sum up, the triply periodic minimal surfaces based graded porous structure is effective in decreasing the stress shielding effect, promoting early osteogenesis and osteointegration. This is the first research to explore the effect of this kind of porous structures on bone formation in vivo where the obtained results supported the previous theoretical research on the application potential in bone tissue engineering. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: Porous architecture designed using triply periodic minimal surface models can achieve gradually changed pore size and appropriate porosity for bone regeneration. This kind of structure can mimic the Young's modulus of natural bone tissue, improve the stress transmission capability and dismiss the stress shielding effect. It also can stimulate the early bone integration in vivo and enhance the binding force between bone and implants, which may bring a new design method for orthopaedic implants and their surface structure.

16.
Ann Transl Med ; 7(18): 462, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31700898

ABSTRACT

BACKGROUND: Hysteroscopy is regarded as the golden standard for the therapeutic and diagnostic methods of many uterine diseases. Carbon dioxide, normal saline and pharmaceuticals are generally used to dilate the uterus to obtain enough operating space and clear vision during the surgery. However, these methods often cause various syndromes. METHODS: In this study, we designed a novel mechanical dilator and operating system. The dilator contains a structure with a diameter of 9 mm in its initial status to pass through the narrow cervix after initial cervical dilation by cervical dilator and then its diameter can be expanded up to 60 mm in the working status to achieve a favorable operating space. The operating system is composed of an endoscope and the surgical instrument driving tube. The endoscope was motioned by pre-bent hyperelastic wires and the surgical instrument was driven by a pre-bent driving tube. To obtain the parameters for successful expansion and operation, the relationships between the tension, the diameter of the dilator and the visual and operating space of the operating system were analyzed in detail. On the basis of the obtained parameters, the surgical experiment was performed and the experimental results demonstrated the ability of this dilator to expand and the ability of the operator to operate in small spaces for hysteroscopy. RESULTS: According to the achieved results, the dilator could support the inner wall of the simulated organ to act like a cage, so that the space in the cage was large enough. The operating system can thrust into the intracavity of the simulated uterus through the channel (with a diameter of 6 mm) of the dilator to search for and excise the raised polyp. CONCLUSIONS: It can be concluded that the proposed dilator and operating system can be efficiently applied in organ expansion and operation in hysteroscopy.

17.
Psychiatry Res Neuroimaging ; 293: 110989, 2019 11 30.
Article in English | MEDLINE | ID: mdl-31634787

ABSTRACT

Neurological soft signs (NSS), as minor neurological deficits, have been identified in several psychiatric disorders, especially in schizophrenia. However, it's unclear how the neuropathological processes of the disease affect NSS related brain morphological changes and whether it is confounded by the use of medication. As NSS also exist in healthy people, the potential confounding effects of psychopathology or medication will be excluded if NSS are investigated in healthy people. Therefore, we applied a novel multivariate approach, source-based morphometry (SBM), to study structural networks in relation to NSS in healthy adults based on structural magnetic resonance imaging (MRI) data. The Heidelberg Scale was applied to evaluate NSS. Using SBM, we constructed structural networks and investigated their associations with NSS in healthy adults. Six grey matter (GM) structural networks were identified. Sensory integration subscores were associated with the cerebellar component and the cortico-basal ganglia-thalamic component. Motor coordination subscores and total NSS scores were associated with the sensorimotor component. The present findings indicated that structural network abnormalities in cerebellar, subcortical and cortical sensorimotor areas contribute to NSS performance in healthy adults.


Subject(s)
Brain/pathology , Brain/physiology , Nervous System Diseases/pathology , Adult , Brain/diagnostic imaging , Cerebellum/pathology , Gray Matter/pathology , Humans , Magnetic Resonance Imaging , Male , Nervous System Diseases/diagnostic imaging , Neurologic Examination , Schizophrenia , Thalamus/pathology
18.
Ann Transl Med ; 7(14): 303, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31475173

ABSTRACT

BACKGROUND: The pelvic ring fractures (PRF) are commonly induced by the high-energy impact and will lead to unstable and sever injures. This study is aimed to explore the stability of anterior external fixation in treating pelvis fracture and evaluate the possibility for these kinds of patients to reduce bedridden time. METHODS: A patient with Tile B3 pelvis fracture was chosen in the research and the corresponding digital model was reconstructed according to the CT images and 3D scanning. Four angles of pelvis under vertical compression were employed in the finite element (FE) analyses. The stress distribution and micro-motion displacement were calculated to validate the instability of pelvis. RESULTS: The stress applied on the pelvis was ranged from 4.296 to 8.364 MPa in all postures. The stress applied on pins was less than 7.011 MPa during reclining, and reached 28.29 MPa when standing. The micro-motion displacement in reclining posture was ranged from 0.005 to 0.087 mm. The value increased to more than 1mm in standing posture. CONCLUSIONS: It was safety for patients with pelvis fracture to sit vertical or recline on the bed during nursing or having treatment, but standing or walking will generate inappropriate micro-motion. The existence of external fixation can reduce the possibility of complications caused by long-term bedridden.

19.
J Orthop Translat ; 18: 20-31, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31508304

ABSTRACT

OBJECTIVE: The objective of this study is to investigate the biomechanics on the knee components caused by degenerative and radial meniscal tears and resultant meniscectomy. METHODS: A detailed finite element model of the knee joint with bones, cartilages, menisci and main ligaments was constructed from a combination of computed tomography and magnetic resonance images. Degenerative and radial tears of both menisci and resultant medial meniscectomy were used and two different kinds of simulations, the vertical and the anterior load, mimicking the static stance and slight flexion simulations, were applied on the model. The compressive and shear stress and meniscus extrusion were evaluated and compared. RESULTS: Generally, both degenerative and radial tears lead to increased peak compressive and shear stress of both cartilages and menisci and large meniscus extrusion, and the medial meniscal tear induced larger value of stress and extrusion than the lateral meniscal tear. The peak stress and meniscus extrusion further elevated after the medial meniscus meniscectomy. Distribution of stress was shifted from the intact hemi joint to the injured hemi joint with either medial or lateral meniscal tear. CONCLUSION: Our finite element model provides a realistic three-dimensional knee model to investigate the effects of degenerative and radial meniscal tears and resultant meniscectomy on the stress distribution of the knee. The stress was increased in meniscal tears and increased significantly when meniscectomy was performed. Increased meniscus extrusion may explain the mechanism for higher stress on the components of the knee. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE: Meniscal tears are the most common damage associated to the menisci, and meniscectomy is often performed to relieve the pain and instability of the knee. The results of our study indicated increased stress on cartilages and menisci, which may lead to early onset of osteoarthritis. This may guide surgeons to preserve more of the meniscus when performing meniscectomy.

20.
Ann Transl Med ; 7(11): 240, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31317010

ABSTRACT

BACKGROUND: Titanium implants are widely used in orthopedic and dental for more than 30 years. Its stable physicochemical properties and mechanical strength are indeed appropriate for implantation. However, the Bioinertia oxidized layer and higher elastic modulus often lead to the early implantation failure. METHODS: In this study, we proposed a simple design of porous structure to minimize the disparity between scaffold and natural bone tissue, and introduced a one-step reaction to form a polydopamine (PDA) layer on the surface of titanium for the purpose of improving osteogenesis as well. The porous scaffolds with pore size of 400 µm and porosity of 44.66% were made by additive manufacturing. The cell behavior was tested by seeding MC3T3-E1 cells on Ti6Al4V films for 15 days. The biomechanical properties were then analyzed by finite element (FE) method and the in vivo osteogenesis effect was accordingly evaluated by implanting the scaffolds for 5 weeks in rabbits. RESULTS: According to the achieved results, it was revealed that the immersion for 40 min with dopamine could significantly improve the cell adhesion. The proposed method for design of porous structure can avoid the stress shielding effect and bone growth inside the PDA coating scaffolds, which were observed at the early stage of bone healing process. CONCLUSIONS: It can be concluded that the proposed PDA coating method is effective in promoting early osteogenesis, as well as being easy to operate, and can be helpful in the future clinical application of titanium implants.

SELECTION OF CITATIONS
SEARCH DETAIL
...