Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters











Publication year range
1.
Nano Lett ; 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291795

ABSTRACT

With high current density, the intense near-electrode CO2 reduction reaction (CO2RR) will cause the concentration gradients of bicarbonate (HCO3-) and hydroxyl (OH-) ions, which affect the selectivity of high-value C2+ products of the CO2RR. In this work, we simulated the near-electrode concentration gradients of electrolyte species with different porous Cu-based CLs (catalyst layers) of GDE (gas diffusion electrode) by COMSOL Multiphysics. The higher porosity CL exhibits a better buffer ability of local alkalinity while ensuring a sufficient supply of H+ and local CO2 concentration. Subsequently, the different porosity CLs were prepared by vacuum-thermal evaporation with different evaporation rate. Structural characterizations and liquid permeability tests confirm the role of the porous CL structure in optimizing concentration gradients. As a result, the high-porosity CL (Cu-HP) exhibits a higher C2+ Faraday efficiency (FE) of ∼79.61% at 500 mA cm-2 under 1 M KHCO3, far more than the FEC2+ ≈ 38.20% with the low-porosity sample (Cu-LP).

2.
Mol Plant ; 17(9): 1423-1438, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39095994

ABSTRACT

Understanding how maize (Zea mays) responds to cold stress is crucial for facilitating breeding programs of cold-tolerant varieties. Despite extensive utilization of the genome-wide association study (GWAS) approach for exploring favorable natural alleles associated with maize cold tolerance, few studies have successfully identified candidate genes that contribute to maize cold tolerance. In this study, we used a diverse panel of inbred maize lines collected from different germplasm sources to perform a GWAS on variations in the relative injured area of maize true leaves during cold stress-a trait very closely correlated with maize cold tolerance. We identified HSF21, which encodes a B-class heat shock transcription factor (HSF) that positively regulates cold tolerance at both the seedling and germination stages. Natural variations in the promoter of the cold-tolerant HSF21Hap1 allele led to increased HSF21 expression under cold stress by inhibiting binding of the basic leucine zipper bZIP68 transcription factor, a negative regulator of cold tolerance. By integrating transcriptome deep sequencing, DNA affinity purification sequencing, and targeted lipidomic analysis, we revealed the function of HSF21 in regulating lipid metabolism homeostasis to modulate cold tolerance in maize. In addition, we found that HSF21 confers maize cold tolerance without incurring yield penalties. Collectively, this study establishes HSF21 as a key regulator that enhances cold tolerance in maize, providing valuable genetic resources for breeding of cold-tolerant maize varieties.


Subject(s)
Gene Expression Regulation, Plant , Genetic Variation , Heat Shock Transcription Factors , Plant Proteins , Zea mays , Zea mays/genetics , Zea mays/metabolism , Zea mays/physiology , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome-Wide Association Study , Cold-Shock Response/genetics , Cold Temperature , Transcription Factors/metabolism , Transcription Factors/genetics
3.
Front Plant Sci ; 15: 1394724, 2024.
Article in English | MEDLINE | ID: mdl-39081518

ABSTRACT

Seed size (SS) constitutes a pivotal trait in watermelon breeding. In this study, we present findings from an examination of two watermelon accessions, namely, BW85 and F211. Seeds from BW85 exhibited a significant enlargement compared to those of F211 at 13 days after pollination (DAP), with the maximal disparity in seed length and width manifesting at 17 DAP. A comprehensive study involving both metabolic and transcriptomic analyses indicated a significant enrichment of the ubiquinone and other terpenoid-quinone biosynthesis KEGG pathways. To detect the genetic region governing seed size, a BSA-seq analysis was conducted utilizing the F2 (BW85 × F211) population, which resulted in the identification of two adjacent QTLs, namely, SS6.1 and SS6.2, located on chromosomes 6. SS6.1 spanned from Chr06:4847169 to Chr06:5163486, encompassing 33 genes, while SS6.2 ranged from Chr06:5379337 to Chr06:5419136, which included only one gene. Among these genes, 11 exhibited a significant differential expression between BW85 and F211 according to transcriptomic analysis. Notably, three genes (Cla97C06G113960, Cla97C06G114180, and Cla97C06G114000) presented a differential expression at both 13 and 17 DAP. Through annotation, Cla97C06G113960 was identified as a ubiquitin-conjugating enzyme E2, playing a role in the ubiquitin pathway that mediates seed size control. Taken together, our results provide a novel candidate gene influencing the seed size in watermelon, shedding light on the mechanism underlying seed development.

4.
J Integr Plant Biol ; 66(7): 1313-1333, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38751035

ABSTRACT

Calcium oscillations are induced by different stresses. Calcium-dependent protein kinases (CDPKs/CPKs) are one major group of the plant calcium decoders that are involved in various processes including drought response. Some CPKs are calcium-independent. Here, we identified ZmCPK2 as a negative regulator of drought resistance by screening an overexpression transgenic maize pool. We found that ZmCPK2 does not bind calcium, and its activity is mainly inhibited during short term abscisic acid (ABA) treatment, and dynamically changed in prolonged treatment. Interestingly, ZmCPK2 interacts with and is inhibited by calcium-dependent ZmCPK17, a positive regulator of drought resistance, which is activated by ABA. ZmCPK17 could prevent the nuclear localization of ZmCPK2 through phosphorylation of ZmCPK2T60. ZmCPK2 interacts with and phosphorylates and activates ZmYAB15, a negative transcriptional factor for drought resistance. Our results suggest that drought stress-induced Ca2+ can be decoded directly by ZmCPK17 that inhibits ZmCPK2, thereby promoting plant adaptation to water deficit.


Subject(s)
Abscisic Acid , Calcium , Droughts , Gene Expression Regulation, Plant , Plant Proteins , Protein Kinases , Zea mays , Zea mays/drug effects , Zea mays/metabolism , Zea mays/genetics , Zea mays/physiology , Calcium/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Gene Expression Regulation, Plant/drug effects , Phosphorylation , Protein Kinases/metabolism , Plants, Genetically Modified , Stress, Physiological/drug effects , Protein Binding/drug effects
5.
Nat Commun ; 15(1): 1264, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341446

ABSTRACT

Nitrate (NO3‒) pollution poses significant threats to water quality and global nitrogen cycles. Alkaline electrocatalytic NO3‒ reduction reaction (NO3RR) emerges as an attractive route for enabling NO3‒ removal and sustainable ammonia (NH3) synthesis. However, it suffers from insufficient proton (H+) supply in high pH conditions, restricting NO3‒-to-NH3 activity. Herein, we propose a halogen-mediated H+ feeding strategy to enhance the alkaline NO3RR performance. Our platform achieves near-100% NH3 Faradaic efficiency (pH = 14) with a current density of 2 A cm-2 and enables an over 99% NO3--to-NH3 conversion efficiency. We also convert NO3‒ to high-purity NH4Cl with near-unity efficiency, suggesting a practical approach to valorizing pollutants into valuable ammonia products. Theoretical simulations and in situ experiments reveal that Cl-coordination endows a shifted d-band center of Pd atoms to construct local H+-abundant environments, through arousing dangling O-H water dissociation and fast *H desorption, for *NO intermediate hydrogenation and finally effective NO3‒-to-NH3 conversion.

6.
Bioresour Technol ; 395: 130371, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278455

ABSTRACT

In this study, a novel Fe-based nanomaterial catalyst (Fe0/FeS) was synthesized via a self-heating process and employed to explore its impact on the formation of humic substances and the mitigation of microplastics. The results reveal that Fe0/FeS exhibited a significant increase in humic acid content (71.01 mg kg-1). Similarly, the formation of humic substances resulted in a higher humification index (4.91). Moreover, the addition of Fe0/FeS accelerated the degradation of microplastics (MPs), resulting in a lower concentration of MPs (9487 particles/kg) compared to the control experiments (22792 particles/kg). Fe0/FeS significantly increased the abundance of medium-sized MPs (50-200 µm) and reduced the abundance of small-sized (10-50 µm) and large-sized MPs (>1000 µm). These results can be attributed to the Fe0/FeS regulating the ▪OH production and specific microorganisms to promote humic substance formation and the degradation of MPs. This study proposes a feasible strategy to improve composting characteristics and reduce contaminants.


Subject(s)
Composting , Humic Substances , Humic Substances/analysis , Sewage , Microplastics , Plastics , Soil
7.
J Environ Manage ; 353: 120213, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38295637

ABSTRACT

Contamination of heavy metals has always been a pressing concern. The dry-wet alternately treated carboxymethylcellulose bentonite (DW-CB) was successfully prepared by intercalating bentonite (BT) with carboxymethyl cellulose (CMC) obtained by solvent processes using enzymatically digested wastepaper as cellulosic raw material, and the adsorption capacity of Cu2+ on DW-CB in aqueous solution was investigated. A 98.18 ± 2.31 % removal efficiency was achieved by 4 g/L of DW-CB after 8 h in a solution containing 100 mg/L of Cu2+, which were 4.1 times and 1.5 times of that of BT and adsorbent prepared without alternating dry-wet process, respectively. The introduction of -COOH groups during the preparation of DW-CB enhanced the electrostatic interaction between DW-CB and Cu2+, which was the main driving force for Cu2+ removal. The pseudo-first-order kinetic model and Langmuir model better described the adsorption process and adsorption capacity of Cu2+ on DW-CB. DW-CB still showed high removal of Cu2+ (19.61 ± 0.99 mg/g) in the presence of multiple metal ions, while exhibiting the potential for removal of Zn2+, Mg2+ and K+, especially Mg2+ (22.69 ± 1.48 mg/g). However, the interactions of organics with Cu2+ severely affected the removal of Cu2+ by DW-CB (removal efficiency: 17.90 ± 4.17 % - 95.33 ± 0.27 %). In this study, an adsorbent with high targeted adsorption of Cu2+ was prepared by utilizing wastepaper and BT, which broadened the way of wastepaper resource utilization and had good economic and social benefits.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Bentonite , Copper/analysis , Water Pollutants, Chemical/analysis , Water , Kinetics , Adsorption , Hydrogen-Ion Concentration
8.
Adv Mater ; 36(5): e2303902, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37651690

ABSTRACT

Electrocatalytic CO2 reduction into value-added fuels and chemicals by renewable electric energy is one of the important strategies to address global energy shortage and carbon emission. Though the classical H-type electrolytic cell can quickly screen high-efficiency catalysts, the low current density and limited CO2 mass transfer process essentially impede its industrial applications. The electrolytic cells based on electrolyte flow system (flow cells) have shown great potential for industrial devices, due to higher current density, improved local CO2 concentration, and better mass transfer efficiency. The design and optimization of flow cells are of great significance to further accelerate the industrialization of electrocatalytic CO2 reduction reaction (CO2 RR). In this review, the progress of flow cells for CO2 RR to C2+ products is concerned. Firstly, the main events in the development of the flow cells for CO2 RR are outlined. Second, the main design principles of CO2 RR to C2+ products, the architectures, and types of flow cells are summarized. Third, the main strategies for optimizing flow cells to generate C2+ products are reviewed in detail, including cathode, anode, ion exchange membrane, and electrolyte. Finally, the preliminary attempts, challenges, and the research prospects of flow cells for industrial CO2 RR toward C2+ products are discussed.

9.
Chem Commun (Camb) ; 59(100): 14803-14806, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38015474

ABSTRACT

During the electrocatalytic CO2 reduction reaction, the faradaic efficiency of products seriously deviates from 100% due to the misjudgment of outlet flow, especially at industrial-level large current density. In this work, several modified equations and internal standard methods are recommended to calibrate the thermal mass flowmeter and establish benchmarks for CO2 reduction performance assessment.

10.
Chemosphere ; 342: 140137, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37730021

ABSTRACT

Pyrolysis of biomass feedstocks can produce valuable biofuel, however, the final products may present excessive corrosion and poor stability due to the lack of hydrogen content. Co-pyrolysis with hydrogen-rich substances such as waste plastics may compensate for these shortcomings. In this study, the co-pyrolysis of a common biomass, i.e. distiller's grains (DG), and waste polypropylene plastic (PP) were investigated towards increasing the quantity and quality of the production of biofuel. Results from the thermogravimetric analyses showed that the reaction interval of individual pyrolysis of DG and PP was 124-471 °C and 260-461 °C, respectively. Conversely, an interaction effect between DG and PP was observed during co-pyrolysis, resulting in a slower rate of weight loss, a longer temperature range for the pyrolysis reaction, and an increase in the temperature difference between the evolution of products. Likewise, the Coats-Redfern model showed that the activation energies of DG, PP and an equal mixture of both were 42.90, 130.27 and 47.74 kJ mol-1, respectively. It thus follows that co-pyrolysis of DG and PP can effectively reduce the activation energy of the reaction system and promote the degree of pyrolysis. Synergistic effects essentially promoted the free radical reaction of the PP during co-pyrolysis, thereby reducing the activation energy of the process. Moreover, due to this synergistic effect in the co-pyrolysis of DG and PP, the ratio of elements was effectively optimized, especially the content of oxygen-containing species was reduced, and the hydrocarbon content of products was increased. These results will not only advance our understanding of the characteristics of co-pyrolysis of DG and PP, but will also support further research toward improving an efficient co-pyrolysis reactor system and the pyrolysis process itself.

11.
Angew Chem Int Ed Engl ; 62(42): e202309351, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37639659

ABSTRACT

Electrocatalytic CO2 reduction reaction (CO2 RR) to multi-carbon products (C2+ ) in acidic electrolyte is one of the most advanced routes for tackling our current climate and energy crisis. However, the competing hydrogen evolution reaction (HER) and the poor selectivity towards the valuable C2+ products are the major obstacles for the upscaling of these technologies. High local potassium ions (K+ ) concentration at the cathode's surface can inhibit proton-diffusion and accelerate the desirable carbon-carbon (C-C) coupling process. However, the solubility limit of potassium salts in bulk solution constrains the maximum achievable K+ concentration at the reaction sites and thus the overall acidic CO2 RR performance of most electrocatalysts. In this work, we demonstrate that Cu nanoneedles induce ultrahigh local K+ concentrations (4.22 M) - thus breaking the K+ solubility limit (3.5 M) - which enables a highly efficient CO2 RR in 3 M KCl at pH=1. As a result, a Faradaic efficiency of 90.69±2.15 % for C2+ (FEC2+ ) can be achieved at 1400 mA.cm-2 , simultaneous with a single pass carbon efficiency (SPCE) of 25.49±0.82 % at a CO2 flow rate of 7 sccm.

12.
J Agric Food Chem ; 71(26): 10133-10143, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37350414

ABSTRACT

Linalool, a plant-derived high-value monoterpene, is widely used in the perfume, cosmetic, and pharmaceutical industries. Recently, engineering microbes to produce linalool has become an attractive alternative to plant extraction or chemical synthesis approaches. However, the low catalytic activity of linalool synthase and the shortage of precursor pools have been considered as two key factors for low yields of linalool. In this study, we rationally engineered the entrance of the substrate-binding pocket of linalool synthase (t67OMcLISM) and successfully increased the catalytic efficiency of this enzyme toward geranyl pyrophosphate. Specifically, F447E and F447A, with decreased entrance hydrophobicity and steric hindrance, increased linalool production by 2.2 and 1.9 folds, respectively. Subsequently, cytoplasm and peroxisomes were harnessed to boost linalool synthesis in Saccharomyces cerevisiae, achieving a high titer of linalool (219.1 mg/L) in shake-flask cultivation. Finally, the engineered diploid strain produced 2.6 g/L of linalool by 5 L fed-batch fermentation, which was the highest production in yeast to date. The protein engineering and biosynthetic pathway compartmentalization in the peroxisome provide references for the microbial production of other monoterpenes.


Subject(s)
Monoterpenes , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Acyclic Monoterpenes/metabolism , Monoterpenes/metabolism , Proteins/metabolism , Organelles/metabolism , Metabolic Engineering
13.
Genome Biol ; 24(1): 94, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37098597

ABSTRACT

BACKGROUND: Phenotypic plasticity is defined as the phenotypic variation of a trait when an organism is exposed to different environments, and it is closely related to genotype. Exploring the genetic basis behind the phenotypic plasticity of ear traits in maize is critical to achieve climate-stable yields, particularly given the unpredictable effects of climate change. Performing genetic field studies in maize requires development of a fast, reliable, and automated system for phenotyping large numbers of samples. RESULTS: Here, we develop MAIZTRO as an automated maize ear phenotyping platform for high-throughput measurements in the field. Using this platform, we analyze 15 common ear phenotypes and their phenotypic plasticity variation in 3819 transgenic maize inbred lines targeting 717 genes, along with the wild type lines of the same genetic background, in multiple field environments in two consecutive years. Kernel number is chosen as the primary target phenotype because it is a key trait for improving the grain yield and ensuring yield stability. We analyze the phenotypic plasticity of the transgenic lines in different environments and identify 34 candidate genes that may regulate the phenotypic plasticity of kernel number. CONCLUSIONS: Our results suggest that as an integrated and efficient phenotyping platform for measuring maize ear traits, MAIZTRO can help to explore new traits that are important for improving and stabilizing the yield. This study indicates that genes and alleles related with ear trait plasticity can be identified using transgenic maize inbred populations.


Subject(s)
Quantitative Trait Loci , Zea mays , Chromosome Mapping , Phenotype , Genotype
14.
Biotechnol Biofuels Bioprod ; 16(1): 43, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36915198

ABSTRACT

Straw biorefinery offers economical and sustainable production of chemicals. The merits of cell immobilization technology have become the key technology to meet D-lactic acid production from non- detoxified corn stover. In this paper, Low acyl gellan gum (LA-GAGR) was employed first time for Lactobacillus bulgaricus T15 immobilization and applied in D-lactic acid (D-LA) production from non-detoxified corn stover hydrolysate. Compared with the conventional calcium alginate (E404), LA-GAGR has a hencky stress of 82.09 kPa and excellent tolerance to 5-hydroxymethylfurfural (5-HMF), ferulic acid (FA), and vanillin. These features make LA-GAGR immobilized T15 work for 50 days via cell-recycle fermentation with D-LA yield of 2.77 ± 0.27 g/L h, while E404 immobilized T15 can only work for 30 days. The production of D-LA from non-detoxified corn stover hydrolysate with LA-GAGR immobilized T15 was also higher than that of free T15 fermentation and E404 immobilized T15 fermentation. In conclusion, LA-GAGR is an excellent cell immobilization material with great potential for industrial application in straw biorefinery industry.

15.
Chemosphere ; 327: 138544, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36996923

ABSTRACT

Microplastics (MPs) are emerging pollutants that interact extensively with dissolved organic matter (DOM) and this influences the environmental behavior of MPs in aqueous ecosystems. However, the effect of DOM on the photodegradation of MPs in aqueous systems is still unclear. The photodegradation characteristics of polystyrene microplastics (PS-MPs) in an aqueous system in the presence of humic acid (HA, a signature compound of DOM) under ultraviolet light conditions were investigated in this study through Fourier transform infrared spectroscopy coupled with two-dimensional correlation analysis, electron paramagnetic resonance, and gas chromatography-mass spectrometry (GC/MS). HA was found to promote higher levels of reactive oxygen species (0.631 mM of ▪OH), which accelerated the photodegradation of PS-MPs, with a higher degree of weight loss (4.3%), higher level of oxygen-containing functional groups, and lower average particle size (89.5 µm). Likewise, GC/MS analysis showed that HA contributed to a higher content of oxygen-containing compounds (42.62%) in the photodegradation of PS-MPs. Moreover, the intermediates and final degradation products of PS-MPs with HA were significantly different in the absence of HA during 40 days of irradiation. These results provide an insight into the co-existing compounds on the degradation and migration processes of MP and also support further research toward the remediation of MPs pollution in aqueous ecosystems.


Subject(s)
Microplastics , Water Pollutants, Chemical , Polystyrenes/chemistry , Plastics , Ultraviolet Rays , Humic Substances/analysis , Ecosystem , Dissolved Organic Matter , Water Pollutants, Chemical/analysis , Oxygen/analysis
16.
Heliyon ; 9(2): e13246, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36755604

ABSTRACT

In this paper, the relationship between black liquor and microbial growth, enzymatic secretion and humus formation in composting was studied. The results showed that black liquor inoculation is an effective way to promote fermentation process. After black liquor inoculation, the abundance of Corynebacterium, Aequorivita, and Pedobacter, which have the catalase and oxidase activity, has been significantly increased. The enzymatic activity of alkaline phosphatase, catalase, peroxidase and invertase was 40 mg/(g·24h), 6.5 mg/(g·20 min), 13 100 mg/(g·24h), and 6100 mg/(g·24h) respectively at day 18. Humic acid and fulvic acid concentration was 12 g/kg and 11 g/kg which is higher than that of the treatments of no black liquor inoculation. The results suggested that black liquor inoculation was beneficial to indigenous microorganisms reproduce efficiently, then the secretion of enzymes related to cellulose, hemicellulose, and lipid hydrolysis, and the formation of humic substances.

17.
Article in English | MEDLINE | ID: mdl-36613125

ABSTRACT

The objective of this study was to optimize the process parameters of the anaerobic co-digestion of pig manure and rice straw to maximize methane production and system stability. In this study, batch experiments were conducted with different mixing ratios of pig manure and rice straw (1:0, 1:1, 1:5, 1:10, and 0:1), total solid concentrations (6%, 8%, 10%, 12%, and 14%), and inoculum accounts (5%, 10%, 15%, 20%, and 25%). The results show that a 1:5 mixing ratio of pig manure to rice straw, a 12% total solid content, and a 15% inoculum account yielded biogas up to 553.79 mL/g VS, which was a result of co-digestion increasing the cooperative index (CPI > 1). Likewise, the evolution of the pH and VFAs indicated that the co-digestion system was well-buffered and not easily inhibited by acidification or ammonia nitrogen. Moreover, the results of the Gompertz model's fitting showed that the cumulative methane production, delay period, effective methane production time, and methane production rate under optimal conditions were significantly superior compared to the other groups employed.


Subject(s)
Manure , Oryza , Animals , Swine , Anaerobiosis , Biofuels , Oryza/chemistry , Methane , Digestion , Bioreactors
18.
Clin Chim Acta ; 537: 146-153, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36279941

ABSTRACT

BACKGROUND AND AIMS: To establish reference intervals (RIs) for PTX-3 and to validate the performance of these RIs in a population including healthy volunteers and Takayasu's arteritis (TAK) patients. MATERIALS AND METHODS: Plasma PTX-3 levels were determined in 166 healthy volunteers and 63 TAK patients. RIs were established in healthy volunteers according to guidelines from the Clinical and Laboratory Standards Institute (CLSI, C28-A3). Global assessment was used to quantitatively diagnose active/non-active TAK patients. Screening and monitoring performances were validated by identifying active TAK patients from the whole population or diagnosed TAK patients. RESULTS: The PTX-3 RI was calculated to be 0.87-2.78 ng/mL. For screening purposes, 1.55 ng/mL had a high sensitivity of 90.32 % and the RI upper limit (2.78 ng/mL) had a high specificity of 97.94 %. For monitoring purposes, the sensitivity/specificity of the cut-off value (1.55 ng/mL) and RI median were 90.32 %/90.63 % and 80.85 %/90.63 %, respectively. These screening and monitoring performances of PTX-3 were superior to those of C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). CONCLUSION: The distribution of serum PTX-3 levels was stable and uniform across the population. The screening and monitoring performances of the cut-off value and RI-derived values of PTX-3 were higher than CRP and ESR.


Subject(s)
Takayasu Arteritis , Humans , Takayasu Arteritis/diagnosis , Takayasu Arteritis/metabolism , C-Reactive Protein/metabolism , Healthy Volunteers , Blood Sedimentation , Reference Values
19.
Bioengineering (Basel) ; 9(9)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36134962

ABSTRACT

The hazards caused by drug-resistant bacteria are rocketing along with the indiscriminate use of antibiotics. The development of new non-antibiotic antibacterial drugs is urgent. The excellent biocompatibility and diverse multifunctionalities of liquid metal have stimulated the studies of antibacterial application. Several gallium-based antimicrobial agents have been developed based on the mechanism that gallium (a type of liquid metal) ions disorder the normal metabolism of iron ions. Other emerging strategies, such as physical sterilization by directly using LM microparticles to destroy the biofilm of bacteria or thermal destruction via infrared laser irradiation, are gaining increasing attention. Different from traditional antibacterial agents of gallium compounds, the pronounced property of gallium-based liquid metal materials would bring innovation to the antibacterial field. Here, LM-based antimicrobial mechanisms, including iron metabolism disorder, production of reactive oxygen species, thermal injury, and mechanical destruction, are highlighted. Antimicrobial applications of LM-based materials are summarized and divided into five categories, including liquid metal motors, antibacterial fabrics, magnetic field-responsive microparticles, liquid metal films, and liquid metal polymer composites. In addition, future opportunities and challenges towards the development and application of LM-based antimicrobial materials are presented.

20.
Chemosphere ; 307(Pt 2): 135943, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35948100

ABSTRACT

Information on the distribution and interaction of microplastics (MPs) and humic acids (HAs) in river sediment has not been fully explored. This study assessed the distribution and interaction of MPs with HAs at different depths in river sediments. The results delineated that the average abundance of MPs in the 0-10 cm layer (190 ± 20 items/kg) was significantly lower than that in the 11-20 cm and 21-30 cm layers (211 ± 10 items/kg and 238 ± 18 items/kg, respectively). Likewise, the large MP particles mainly existed in the 0-10 cm layer (31.53%-37.87%), while small MP particles were found in the 21-30 cm layers (73.23%-100%). Moreover, HAs in MPs showed a transformation from low molecular weight to high molecular weight with an increase in depth from 0-10 cm to 21-30 cm, which may contribute to the distribution of MPs in the river sediments. These results provide new insight into the migration of MP pollution in river sediments, but further research needs to assess the interaction of MP with HA for mitigating MP pollution in river sediment.


Subject(s)
Microplastics , Water Pollutants, Chemical , Environmental Monitoring/methods , Geologic Sediments , Humic Substances , Plastics , Rivers , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL