Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.258
Filter
1.
Nat Commun ; 15(1): 7071, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152117

ABSTRACT

Acquiring multi-dimensional optical information, such as intensity, spectrum, polarization, and phase, can significantly enhance the performance of photodetectors. Incorporating these dimensions allows for improved image contrast, enhanced recognition capabilities, reduced interference, and better adaptation to complex environments. However, the challenge lies in obtaining these dimensions on a single photodetector. Here we propose a misaligned unipolar barrier photodetector based on van der Waals heterojunction to address this issue. This structure enables spectral detection by switching between two absorbing layers with different cut-off wavelengths for dual-band detection. For polarization detection, anisotropic semiconductors like black phosphorus and black arsenic phosphorus inherently possess polarization-detection capabilities without additional complex elements. By manipulating the crystal direction of these materials during heterojunction fabrication, the device becomes sensitive to incident light at different polarization angles. This research showcases the potential of the misaligned unipolar barrier photodetector in capturing multi-dimensional optical information, paving the way for next-generation photodetectors.

2.
Mol Med ; 30(1): 126, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39152406

ABSTRACT

BACKGROUND: Bone marrow mesenchymal stem cells (BMMSCs) are commonly used for cell transplantation to treat refractory diseases. However, the presence of inflammatory factors, such as tumour necrosis factor-alpha (TNF-α), at the transplantation site severely compromises the stemness of BMMSCs, thereby reducing the therapeutic effect of cell transplantation. Aspirin (AS) is a drug that has been in use for over a century and has a wide range of effects, including the regulation of cell proliferation, multidirectional differentiation, and immunomodulatory properties of stem cells. However, it is still unclear whether AS can delay the damaging effects of TNF-α on BMMSC stemness. METHODS: This study investigated the effects of AS and TNF-α on BMMSC stemness and the molecular mechanisms using colony formation assay, western blot, qRT-PCR, and overexpression or knockdown of YAP and SMAD7. RESULTS: The results demonstrated that TNF-α inhibited cell proliferation, the expression of stemness, osteogenic and chondrogenic differentiation markers of BMMSCs. Treatment with AS was shown to mitigate the TNF-α-induced damage to BMMSC stemness. Mechanistic studies revealed that AS may reverse the damage caused by TNF-α on BMMSC stemness by upregulating YAP and inhibiting the expression of SMAD7. CONCLUSION: AS can attenuate the damaging effects of TNF-α on BMMSC stemness by regulating the YAP-SMAD7 axis. These findings are expected to promote the application of AS to improve the efficacy of stem cell therapy.


Subject(s)
Aspirin , Cell Differentiation , Cell Proliferation , Mesenchymal Stem Cells , Smad7 Protein , Tumor Necrosis Factor-alpha , YAP-Signaling Proteins , Tumor Necrosis Factor-alpha/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Smad7 Protein/metabolism , Smad7 Protein/genetics , Aspirin/pharmacology , Cell Proliferation/drug effects , Cell Differentiation/drug effects , YAP-Signaling Proteins/metabolism , Signal Transduction/drug effects , Animals , Transcription Factors/metabolism , Transcription Factors/genetics , Humans , Cells, Cultured , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Osteogenesis/drug effects , Mice
4.
CNS Neurosci Ther ; 30(8): e14899, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39107966

ABSTRACT

AIMS: Deep brain stimulation (DBS) is not routinely performed in elderly patients (≥75 years old) to date because of concerns about complications and decreased benefit. This study aimed to evaluate the safety and efficacy of DBS in elderly patients with Parkinson's disease. METHODS: A retrospective analysis was performed using data from 40 elderly patients from four centers who were treated with neurosurgical robot-assisted DBS between September 2016 and December 2021. These patients were followed up for a minimum period of 2 years, with a subgroup of nine patients followed up for 5-7 years. Patient demographic characteristics, surgical information, pre- and postoperative motor scores, non-motor scores, activities of daily living, and complications were retrospectively analyzed. RESULTS: The mean surgical procedure duration was 1.65 ± 0.24 h, with a mean electrode implantation duration of 1.10 ± 0.23 h and a mean pulse generator implantation duration of 0.55 ± 0.07 h. The mean pneumocephalus volume, electrode fusion error, and Tao's DBS surgery scale were 16.23 ± 12.81 cm3, 0.81 ± 0.23 mm, and 77.63 ± 8.08, respectively. One patient developed a skin infection, and the device was removed. The Unified Parkinson's disease rating scale, Unified Parkinson's disease rating scale of Part III, tremor, rigidity, bradykinesia, axial, and Barthel index for activities of daily living (ADL-Barthel) scores significantly improved at the 2-year follow-up (p < 0.05). The levodopa equivalent daily dose (LEDD) was significantly reduced at the 2-year follow-up (p < 0.05). However, the Montreal cognitive assessment, Hamilton depression scale, and Hamilton anxiety scale scores did not significantly change during the 2-year follow-up (p > 0.05). Additionally, in the subgroup with a 5-year follow-up, the motor symptoms, ADL-Barthel score, and cognitive function worsened over time compared to baseline. However, there was still an improvement in motor symptoms and ADL with DBS on-stimulation compared with the off-stimulation state. The LEDD increased 5 years after surgery compared to that at baseline. Eleven patients had passed away during follow-up, the mean survival time was 38.3 ± 17.3 months after surgery, and the mean age at the time of death was 81.2 (range 75-87) years. CONCLUSION: Robot-assisted DBS surgery for the elderly patients with Parkinson's disease is accurate and safe. Motor symptoms and ADL significantly improve and patients can benefit from long-term neuromodulation, which may decrease the risk of death.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Humans , Deep Brain Stimulation/methods , Aged , Female , Male , Parkinson Disease/therapy , Retrospective Studies , Aged, 80 and over , Treatment Outcome , Activities of Daily Living , Follow-Up Studies
5.
Sci Total Environ ; 950: 175145, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39089382

ABSTRACT

Deep soil drying is a physical soil phenomenon that has become increasingly characteristic to artificial afforestation on China's Loess Plateau. Current research is largely short of conclusive reports on soil moisture recovery following deep soil drying in afforested lands. In this study, a 10-m deep underground column was constructed at Pengyang Experimental Station in Ningxia. The CS650-CR1000 automatic soil moisture monitoring system and BLJW-4 small meteorological observation stations were used to respectively monitor soil moisture and meteorological conditions in the study area for the period 2014-2019. The local rainfall was classified and the characteristics of soil infiltration analyzed at both monthly and annual scales. The results showed that: i) Deep soil moisture recovery in the semi-arid Loess Plateau region depended mainly on 25-49.9 mm and >50 mm types of rainfall; together accounting for 35.44 % of the precipitation. ii) Deep soil moisture replenishment occurred mainly for the period from April to October. While this accounted for 30.13 % of the precipitation, evaporation loss accounted for 69.87 % of it. With increasing monthly rainfall (Pm), the variation in monthly infiltration depth (Zm) was quadratic in shape - where Zm = -0.0094 Pm2 + 3.7702 Pm (R2 = 0.9577). iii) At the annual scale, deep soil moisture replenishment was mainly driven by year-on-year infiltration water accumulation. This is because a single year precipitation infiltration was not enough to replenish deep soil moisture. The cumulative infiltration depth for 2014-2019 was 180, 260, 400, 700, 1000 > 1000 cm. It suggested that soil water infiltration and deep dry soil recovery occurred at different times under rainfed conditions in the semi-arid loess hills in China. This is key for in-depth studies of the hydrological process in dry soil regions.

6.
Nat Synth ; 3(3): 378-385, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39119242

ABSTRACT

Nimbolide, a ring seco-C limonoid natural product, was recently found to inhibit the poly(ADP)-ribosylation (PARylation)-dependent ubiquitin E3 ligase RNF114. In doing so, it induces the 'supertrapping' of both PARylated PARP1 and PAR-dependent DNA-repair factors. PARP1 inhibitors have reshaped the treatment of cancer patients with germline BRCA1/2 mutations partly through the PARP1 trapping mechanism. To this end, modular access to nimbolide analogues represents an opportunity to develop cancer therapeutics with enhanced PARP1 trapping capability. Here we report a convergent synthesis of nimbolide through a late-stage coupling strategy. Through a sulfonyl hydrazone-mediated etherification and a radical cyclization, this strategy uses a pharmacophore-containing building block and diversifiable hydrazone units to enable the modular synthesis of nimbolide and its analogues. The broad generality of our synthetic strategy allowed access to a variety of analogues with their preliminary cellular cytotoxicity and PARP1 trapping activity reported.

7.
Sci Rep ; 14(1): 17899, 2024 08 02.
Article in English | MEDLINE | ID: mdl-39095516

ABSTRACT

SLAMF9, a member of the conserved lymphocyte activation molecules family (SLAMF), has been less investigated compared to other SLAMs, especially concerning its implications across various cancer types. In our systematic pan-cancer investigation, we observed elevated SLAMF9 expression in various tumor tissues, which was correlated with reduced patient survival across most malignancies. Correlation analyses further revealed significant associations between SLAMF9 expression and immune cell infiltrates, immune checkpoint inhibitors, tumor mutation load, microsatellite instability, and epithelial-mesenchymal transition (EMT) scores. Cell-based assays demonstrated that SLAMF9 knockdown attenuated the proliferative, motile, and invasive capacities of colorectal cancer (CRC) cells. In a nude mouse xenograft model, suppression of SLAMF9 expression substantially inhibited tumor growth. These findings highlight the potential of SLAMF9 as a prognostic and therapeutic biomarker across tumors, with notable implications for CRC cell proliferation and migration.


Subject(s)
Cell Proliferation , Colorectal Neoplasms , Signaling Lymphocytic Activation Molecule Family , Animals , Female , Humans , Mice , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cell Movement , Colorectal Neoplasms/immunology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Mice, Nude , Microsatellite Instability , Prognosis , Signaling Lymphocytic Activation Molecule Family/metabolism , Signaling Lymphocytic Activation Molecule Family/genetics
8.
Sci Rep ; 14(1): 17180, 2024 07 26.
Article in English | MEDLINE | ID: mdl-39060630

ABSTRACT

The enhancement of regional comprehensive development ability is significantly impacted by the study on the implementation effect of regional integration strategies. The integration strategy's impact on urban development during COVID-19 in the Yangtze River Delta(YRD) is unclear. According to prior industrial transfer theory, Hefei, Anhui's capital, is difficult to transfer industries, and other YRD cities push industry integration in Anhui. This study employs the theory of economic and land resource use to examine the resilience of the industrial economy during an epidemic by using industrial land as a representation of industrial economic development. The three cities in Anhui-Wuhu, Maanshan, and Chuzhou (Wu-ma-Chu) were selected as the research area. The study employed the UNet deep learning method to detect the land use types in Wu-ma-Chu. The land transfer matrix and the standard deviation ellipse were utilised to research the alterations in industrial land use and the spatial distribution of industrial output value, respectively. The results showed that the industrial land in Machu continued to grow during the outbreak, highlighting the resilience of the region's industrial economy. During 2019-2022, the elliptical ring of industrial output value is distributed in Nanjing, revealing the radiating role of Nanjing in integrating into the integration of the YRD. This confirms China's YRD integration strategy, strengthens regional economic resilience, and encourages coordinated regional economic development.


Subject(s)
COVID-19 , Cities , Rivers , COVID-19/epidemiology , COVID-19/economics , China/epidemiology , Humans , Economic Development , Industry/economics , Industrial Development , SARS-CoV-2
9.
Angew Chem Int Ed Engl ; : e202403196, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972846

ABSTRACT

Photoactive black-phase formamidinium lead triiodide (α-FAPbI3) perovskite has dominated the prevailing high-performance perovskite solar cells (PSCs), normally for those spin-coated, conventional n-i-p structured devices. Unfortunately, α-FAPbI3 has not been made full use of its advantages in inverted p-i-n structured PSCs fabricated via blade-coating techniques owing to uncontrollable crystallization kinetics and complicated phase evolution of FAPbI3 perovskites during film formation. Herein, a customized crystal surface energy regulation strategy has been innovatively developed by incorporating 0.5 mol % of N-aminoethylpiperazine hydroiodide (NAPI) additive into α-FAPbI3 crystal-derived perovskite ink, which enabled the formation of highly-oriented α-FAPbI3 films. We deciphered the phase transformation mechanisms and crystallization kinetics of blade-coated α-FAPbI3 perovskite films via combining a series of in-situ characterizations and theoretical calculations. Interestingly, the strong chemical interactions between the NAPI and inorganic Pb-I framework help to reduce the surface energy of (100) crystal plane by 42 %, retard the crystallization rate and lower the formation energy of α-FAPbI3. Benefited from multifaceted advantages of promoted charge extraction and suppressed non-radiative recombination, the resultant blade-coated inverted PSCs based on (100)-oriented α-FAPbI3 perovskite films realized promising efficiencies up to 24.16 % (~26.5 % higher than that of the randomly-oriented counterparts), accompanied by improved operational stability. This result represented one of the best performances reported to date for FAPbI3-based inverted PSCs fabricated via scalable deposition methods.

10.
Osteoarthr Cartil Open ; 6(3): 100496, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39021876

ABSTRACT

Objectives: Numerous studies have established the role of inflammation in osteoarthritis (OA) progression, yet limited research explores the association between systemic inflammatory indicators and pre-diagnosis OA risk. This study aimed to investigate the association between peripheral inflammatory indicators and the risk of OA using data from the UK Biobank. Methods: The study analyzed data from 417,507 participants in the UK Biobank, including neutrophil count, lymphocyte count, monocyte count, platelet count, and C-reactive protein meter. Additionally, derived ratios such as NLR(neutrophils-lymphocytes ratio), PLR(Platelets-lymphocytes ratio), SII(systemic immune-inflammation index), and LMR (lymphocytes-monocytes ratio) were examined. Cox proportional hazards models and restricted cubic spline models were used to assess both linear and nonlinear associations. Results: Over a mean follow-up period of 12.7 years, a total of 49,509 OA events were identified. The findings revealed that CRP (HR:1.06, 95%CI:1.05-1.07), NLR (HR:1.02, 95%CI:1.01-1.03), PLR (HR:1.02, 95%CI:1.01-1.03), and SII (HR:1.03, 95%CI:1.01-1.04) were associated with an increased risk of OA, while LMR (HR:0.97, 95%CI:0.96-0.99) showed a significant negative correlation with OA risk. Subgroup analyses further emphasized that these associations were significant across most of the population. Although neutrophils, lymphocytes, monocytes, and platelets showed a nominal association with the risk of OA, the results were unreliable, especially for specific joint OA. Conclusion: The study provides evidence of a significant association between elevated peripheral inflammatory indicators and OA risk. These findings underscore the importance of low-grade chronic inflammation in OA development. The potential clinical utility of these indicators as early predictors of OA is suggested, warranting further exploration.

11.
Article in English | MEDLINE | ID: mdl-39026454

ABSTRACT

OBJECTIVES: This study aims to investigate the clinical features of differentiated thyroid carcinoma (DTC) in children and adolescents under 18 years and assess the impact of surgery combined with thyroid hormone and radioactive iodine (RAI) on their prognosis. METHODS: A retrospective observational study was conducted, involving children/adolescents with DTC who underwent surgery at the Head and Neck Department of Tianjin Medical University Cancer Institute and Hospital from January 1998 to December 2018. RESULTS: Among 198 patients, 130 (65.7 %) were female. According to the American Thyroid Association guidelines, cases were categorized as low (106, 53.5 %), intermediate (54, 27.3 %), and high (38, 19.2 %) risk. The follow-up duration ranged from 3 to 23 years. Local recurrence and distant metastasis were identified in 21 (10.6 %) and 14 (7.1 %) cases, respectively. All patients received levothyroxine, while RAI therapy was administered to intermediate- and high-risk patients. The local recurrence and distant metastasis rates in these two groups were 33.3 and 39.5 %, respectively, with no recurrence or metastasis in the low-risk group. Persistent without structural evidence of disease were 0.9, 3.7, and 26.3 % at end of follow-up for the low-, intermediate-, and high-risk groups, respectively. The overall survival rates for all three groups were 100 %, while disease-free survival rates were 99.1, 63.0, and 34.2 % for the low-, intermediate-, and high-risk groups, respectively. CONCLUSIONS: Children/adolescents with low-risk DTC exhibited a favorable prognosis even without RAI. However, intermediate- and high-risk DTC patients, despite RAI and levothyroxine treatment, showed elevated rates of persistent disease, local recurrence, and distant metastasis.

12.
Sci Adv ; 10(29): eadn8706, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028816

ABSTRACT

Poly(l-lactic acid) (PLLA) is a widely used U.S. Food and Drug Administration-approved implantable biomaterial that also possesses strong piezoelectricity. However, the intrinsically low stability of its high-energy piezoelectric ß phase and random domain orientations associated with current synthesis approaches remain a critical roadblock to practical applications. Here, we report an interfacial anchoring strategy for fabricating core/shell PLLA/glycine (Gly) nanofibers (NFs) by electrospinning, which show a high ratio of piezoelectric ß phase and excellent orientation alignment. The self-assembled core/shell structure offers strong intermolecular interactions between the -OH groups on Gly and C=O groups on PLLA, which promotes the crystallization of oriented PLLA polymer chains and stabilizes the ß phase structure. As-received core/shell NFs exhibit substantially enhanced piezoelectric performance and excellent stability. An all NF-based nonwoven fabric is fabricated and assembled as a flexible nanogenerator. The device offers excellent conformality to heavily wrinkled surfaces and thus can precisely detect complex physiological motions often found from biological organs.


Subject(s)
Biocompatible Materials , Nanofibers , Polyesters , Nanofibers/chemistry , Biocompatible Materials/chemistry , Polyesters/chemistry , Prostheses and Implants , Textiles , Glycine/chemistry
13.
Angew Chem Int Ed Engl ; : e202411702, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977404

ABSTRACT

It has long been an aspirational goal to create artificial channel structures that replicate the feat achieved by ion channel proteins. Biological ion channels occasionally demonstrate multiple conductance states (known as subconductance), remaining a challenging property to achieve in artificial channel molecules. We report a funnel-shaped single-molecule channel constructed by an electron-deficient macrocycle and two electron-deficient aromatic imide arms. Planar lipid bilayer measurements reveal distinct current recordings, including a closed state, two conducting states, and spontaneous transitions between the three states, resembling the events seen in biological ion channels. The transitions result from conformational changes induced by chloride transport in the channel molecule. Both opening states show a non-linear and rectifying I-V relationship, indicating voltage-dependent transport due to the asymmetrical channel structure. This work could enhance our understanding of ion permeation and channel opening mechanism.

14.
RSC Adv ; 14(31): 22486-22496, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39015668

ABSTRACT

Pt/C catalysts have been considered the ideal cathodic catalyst for proton exchange membrane fuel cells (PEMFCs) due to their superior oxygen reduction reaction (ORR) catalytic activity at low temperatures. However, oxidation and corrosion of the carbon black support at the cathode result in the agglomeration of Pt particles, which reduces the active sites in the Pt/C catalyst. Graphene supports have shown great promise to address this issue, and therefore, finding out the main structural features of the graphene support is of great significance for guiding the rational construction of graphene-based Pt (Pt/graphene) catalysts for optimized ORR catalysts. In order to systematically study the influence of the structural features of the graphene support on the electro-catalytic properties of Pt/graphene catalysts, we prepared porous nitrogen-doped reduced graphene oxide (P-NRGO), nitrogen-doped reduced graphene oxide (NRGO), treated P-NRGO (TP-NRGO) and reduced graphene oxide (RGO) with different nitrogen species contents (7.76, 7.54, 3.24, and 0.14 at%), oxygen species contents (18.68, 18.12, 6.34 and 21.12 at%), specific surface areas (370.4, 70.6, 347.7 and 276.2 m2 g-1) and pore volumes (1.366, 0.1424, 1.3299 and 1.0414 cm3 g-1). The ORR activity of the four Pt/graphene catalysts when listed in the order of their half-wave potentials (E 1/2) and peak power densities was found to be as Pt/P-NRGO > Pt/NRGO > Pt/TP-NRGO > Pt/RGO. The long-term durability of Pt/P-NRGO for the operation of H2-air PEMFCs is better than that of commercial Pt/C catalysts. The excellent ORR catalytic performance of Pt/P-NRGO compared to that of the other three Pt/graphene catalysts is ascribed to the high nitrogen species content of P-NRGO that can facilitate the uniform dispersion of Pt particles and provide accessible active sites for ORR. The results indicate that the specific surface area (SSA) and heteroatom dopants have strong influence on the Pt particle size, and that the nitrogen species of graphene supports play a more important role than the oxygen species, specific surface area and pore volume for the Pt/graphene catalysts in providing accessible active sites.

15.
Nanotechnology ; 35(40)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38986444

ABSTRACT

Benefiting from the ultrahigh specific surface areas, massive exposed surface atoms, and highly tunable microstructures, the two-dimensional (2D) noble metal nanosheets (NSs) have presented promising performance for various electrocatalytic reactions. Nevertheless, the heteroatom doping strategy, and in particular, the electronic structure tuning mechanisms of the 2D noble metal catalysts (NMCs) yet remain ambiguous. Herein, we first review several effective strategies for modulating the electrocatalytic performance of 2D NMCs. Then, the electronic tuning effect of hetero-dopants for boosting the electrocatalytic properties of 2D NMCs is systematically discussed. Finally, we put forward current challenges in the field of 2D NMCs, and propose possible solutions, particularly from the perspective of the evolution of electron microscopy. This review attempts to establish an intrinsic correlation between the electronic structures and the catalytic properties, so as to provide a guideline for designing high-performance electrocatalysts.

16.
Sci Rep ; 14(1): 16854, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39039150

ABSTRACT

The utilization of drag-reducing polymers has long been hindered by their irritancy, corrosiveness, and toxicity across various domains. In this investigation, we explored sodium alginate, a natural drag reducer, for its efficacy in reducing drag and its resilience to shear in millimeter-scale pipelines. Initially, an experimental setup was devised to assess the drag reduction capabilities of sodium alginate at varying concentrations and flow rates using Response Surface Methodology (RSM). The relationship between drag reduction (DR), concentration (C), and flow rate (Q) was established by analyzing the experimental data. Subsequently, variance analysis was employed to validate the data accuracy, with a comparison between predicted and experimental DR values revealing an error margin within ± 20%. Analysis of cyclic shear testing of sodium alginate solution in tubes demonstrated its effectiveness as a shear flow drag reducer. Furthermore, results from laser particle size analysis indicated minimal molecular breakage of sodium alginate during cyclic shear.

17.
Res Sq ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38978591

ABSTRACT

Unraveling the signaling roles of intermediate complexes is pivotal for G protein-coupled receptor (GPCR) drug development. Despite hundreds of GPCR-Gαßγ structures, these snapshots primarily capture the fully activated complex. Consequently, the functions of intermediate GPCR-G protein complexes remain elusive. Guided by a conformational landscape visualized via 19F quantitative NMR and molecular dynamics (MD) simulation, we determined the structure of an intermediate GPCR-mini-Gαsßγ complex at 2.8 Å using cryo-EM, by blocking its transition to the fully activated complex. Furthermore, we presented direct evidence that the intermediate complex initiates a rate-limited nucleotide exchange without progressing to the fully activated complex, in which the α-helical domain (AHD) of the Gα is partially open engaged by a second nucleotide. Our MD simulation supported the pose of the AHD domain. These advances bridge a significant gap in our understanding the complexity of GPCR signaling.

18.
J Environ Manage ; 366: 121794, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38986371

ABSTRACT

Granular sludge is an alternative technology for the direct treatment of acidic nitrate-containing wastewater. Rapid remediation of disintegrated granules is essential to achieve efficient nitrogen removal. In this study, denitrifying granules were inactivated and disintegrated when the influent nitrate-nitrogen concentration was elevated from 240 to 360 mg L-1 in acidic wastewater (pH = 4.1) in a sequencing batch reactor. Tightly bound extracellular polymeric substances (TB-EPS) decreased by 60%, and extracellular protein (PN) was the main component of the reduced EPS. The three-dimensional excitation emission matrices (3D-EEM) results confirmed that the PNs that decreased were mainly tryptophan-like, tyrosine-like, and aromatic. This study further confirmed that the decrease in PN was mainly from the destruction of C=O (amide I) and N-H functional groups. Overloading of nitrogen-inhibited denitrifying activity and the destruction and dissolution of TB-EPS by acidic pH were responsible for granule disintegration, with PNs playing a major role in maintaining granule stability. Based on this, new granules with an average particle size of 454.4 µm were formed after calcium chloride addition; EPS nearly doubled during granule formation with PN as the dominant component, accounting for 64.7-78.4% of the EPS. Atomic force microscopy (AFM) revealed that PN-PN adhesion increased by 1.6-4.9 times in the presence of calcium ions, accelerating the re-granulation of disintegrated particles. This study provides new insights into the disintegration and remediation of granular sludge under acidic conditions.


Subject(s)
Calcium , Denitrification , Nitrogen , Sewage , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Calcium/chemistry , Nitrogen/chemistry , Waste Disposal, Fluid/methods , Extracellular Polymeric Substance Matrix/metabolism , Hydrogen-Ion Concentration
19.
J Hazard Mater ; 477: 135152, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39047554

ABSTRACT

Raphidiopsis raciborskii (R. raciborskii) forms harmful cyanobacterial blooms globally, and poses a great threat to the safety of drinking water and public health. There is a great need to develop eco-friendly biological alternative measures to mitigate mass blooms of R. raciborskii. However, previous rare studies on algicidal microorganisms against R. raciborskii restricted this aim. Recently, an algicidal bacterium Streptomyces sp. HY (designated HY) was identified with flavones producing ability, and could remove up to 98.73 % of R. raciborskii biomass within 48 h by directly attacking the cyanobacterium and release of algicidal substances (i.e., flavonoids) with a inoculum ratio of 5 %. Algicidal rate of HY was enhanced by 88.05 %, 89.33 % under dark and light, and full-light conditions respectively, when compared with the dark condition. Its algicidal substances were stable in a broad range of temperature (-80-55 °C) and pH (3-11) conditions, and all treated groups exhibited ≈ 100 % algicidal rate at day 3. HY treatment disrupted the photosynthesis system and triggered serious oxidative stress resulting in severe morphological injury. Thereby, HY treatment significantly affected expression levels of several essential genes (i.e., psbA, psaB, rbcL, ftsZ, recA, grpE), and simultaneously inhibited the biosynthesis and release of cylindrospermopsin. Yet, HY treatment didn't show any toxicity to zebrafish test embryos. Such results indicate that HY is a promising algicidal candidate strain to control global R. raciborskii blooms, and holds great promises for an effective biological measure to sustain water safety.


Subject(s)
Harmful Algal Bloom , Streptomyces , Zebrafish , Streptomyces/metabolism , Harmful Algal Bloom/drug effects , Animals , Flocculation , Flavonoids/toxicity , Embryo, Nonmammalian/drug effects , Flavones/toxicity , Flavones/pharmacology , Flavones/chemistry , Cyanobacteria
20.
Pharmaceutics ; 16(7)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39065627

ABSTRACT

Exosomes are small membrane vesicles in a cell culture. They are secreted by most cells and originate from the endosomal pathway. A variety of proteins, lipids, and genetic materials have been shown to be carried by exosomes. Once taken up by neighboring or distant cells, the bioactive compounds in exosomes can regulate the condition of recipient cells. Typically, producing exosomes in large quantities requires cell culture, resulting in high production costs. However, exosomes are abundant in milk and can be isolated on a large scale at a low cost. In our study, we found that milk exosomes can promote the synthesis and reconstruction of stratum corneum lipids, enhance skin barrier function, and provide greater protection for the skin. Furthermore, milk exosomes have anti-inflammatory properties that can reduce skin irritation, redness, and other symptoms, giving immediate relief. They also exhibit antioxidant activity, which helps neutralize free radicals and slows down the skin aging process. Additionally, milk exosomes inhibit melanin production, aiding in skin whitening. Ongoing research has uncovered the benefits of milk exosomes for skin improvement and their application in cosmetics, skin healthcare, and other fields, and these applications are continuing to expand.

SELECTION OF CITATIONS
SEARCH DETAIL